• 第25月第7天 聚宽 svm


    1.

    # 克隆自聚宽文章:https://www.joinquant.com/post/2709
    # 标题:基于SVM的机器学习策略
    # 作者:走得很慢的海龟
    
    import math
    import numpy as np
    #from sklearn import preprocessing, cross_validation, svm
    from sklearn import preprocessing, svm
    import matplotlib.pyplot as plt
    from matplotlib import style
    import sklearn
    import time
    from datetime import datetime
    import cPickle as pickle
    
    def initialize(context):
        g.train=True
        
    # year_date is for get_fundamentals
    def train_data(year_date, index_date):
        Valuation=[]
        price=[]
        status=[]
        SZ1=get_index_stocks('399008.XSHE', date=index_date)
        SZ2=get_index_stocks('399012.XSHE', date=index_date)
        SH=get_index_stocks('399905.XSHE', date=index_date)
        tem_index=SZ1+SZ2+SH
        unix_30d=60*60*24*30
        unix_weekend=60*60*24*3
        
        q=query(
        income.code, income.pubDate, income.total_operating_revenue,
        income.total_operating_cost, income.administration_expense,
        income.operating_profit, income.non_operating_revenue,
        income.total_profit, income.net_profit, income.basic_eps,
        income.diluted_eps, income.total_composite_income
        ).filter(
        valuation.code.in_(tem_index))
        
        incm = get_fundamentals(q, statDate=year_date)
        date=incm['pubDate']
        index=incm['code']
    
        q=query(
        indicator
        ).filter(
        valuation.code.in_(index))
        indictor=get_fundamentals(q, statDate=year_date)
        del(indictor['code'], indictor['statDate'], indictor['pubDate'])
    
        for each in range(0,len(date)):
            q=query(
            valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
            ).filter(
            valuation.code==(index[each]))
            each_valuation=get_fundamentals(q, date=date[each])
            
            date_stamp = datetime.strptime(date[each], '%Y-%m-%d')
            unix=time.mktime(date_stamp.timetuple())
            unix_30_late=unix+unix_30d
            
            Valuation.append(each_valuation.iloc[0].tolist())
            
            p1=get_price(index[each], start_date=date[each], 
            end_date=date[each], frequency='daily', fields='close')
                
            if not p1.empty:
                pass
            else:
                p1_weekend=datetime.fromtimestamp(unix-unix_weekend).strftime('%Y-%m-%d')
                p1=get_price(index[each], start_date=p1_weekend, 
                end_date=p1_weekend, frequency='daily', fields='close')
                
            p1_30d=datetime.fromtimestamp(unix_30_late).strftime('%Y-%m-%d')
            p2=get_price(index[each], start_date=p1_30d, 
            end_date=p1_30d, frequency='daily', fields='close')
            
            if not p2.empty:
                pass
            else:
                date_stamp2 = datetime.strptime(p1_30d, '%Y-%m-%d')
                unix2=time.mktime(date_stamp2.timetuple())
                unix2_weekend=unix2-unix_weekend
                p2_weekend=datetime.fromtimestamp(unix2_weekend).strftime('%Y-%m-%d')
                p2=get_price(index[each], start_date=p2_weekend, 
                end_date=p2_weekend, frequency='daily', fields='close')
    
            dif =  p2.values / p1.values
    
            if dif > 1.1:
                s=1
            else:
                s=0
            status.append(s)
            
            price.append(p1.iloc[0].tolist())
                
        Valuation=pd.DataFrame(Valuation, columns=['pe','pb','cir_mkt_cap'])
        price=pd.DataFrame(price, columns=['price'])
        status=pd.DataFrame(status, columns=['status'])
        df=pd.concat([incm,Valuation,price,indictor,status], axis=1)
        
        del(df['pubDate'], df['statDate.1'], df['code'])
        #y=df['status'].values.tolist()
        #df=np.random.permutation(df)
        #del(df['status'], df['code'])
        #X=np.array(df.replace('NaN', 9999).values.tolist())
        #X=preprocessing.scale(X)
        return df
    
    def fundamental(index):
        Valuation=[]
        price=[]
        status=[]
        
        q=query(
        income.total_operating_revenue,
        income.total_operating_cost, income.administration_expense,
        income.operating_profit, income.non_operating_revenue,
        income.total_profit, income.net_profit, income.basic_eps,
        income.diluted_eps, income.total_composite_income
        ).filter(
        valuation.code.in_(index))
        incm = get_fundamentals(q)
        
        q=query(
        valuation.pe_ratio, valuation.pb_ratio, valuation.circulating_market_cap
        ).filter(
        valuation.code.in_(index))
        Valuation=get_fundamentals(q)#.values.tolist()
        
        q=query(
        indicator
        ).filter(
        valuation.code.in_(index))
        indictor=get_fundamentals(q)#.values.tolist()
        index2=indictor['code']
        del(indictor['code'], indictor['statDate'], indictor['pubDate'], indictor['day'])
        
        for each in index2:
            p=attribute_history(each, 1, unit='1d', fields=['close'], skip_paused=True)
            price.append(p.iloc[0].tolist())
            
        price=pd.DataFrame(price, columns=['price'])
        df=pd.concat([incm,Valuation,price,indictor], axis=1)
        X=np.array(df.replace('NaN', 9999).values.tolist())
    
        X=preprocessing.scale(X)
        return X, index2
    
    def handle_data(context, data):
        if g.train:
            index_date=str('2014-03-01')
            df1=train_data(str('2014q1'),index_date)
            df2=train_data(str('2014q2'),index_date)
            df3=train_data(str('2014q3'),index_date)
            df4=train_data(str('2014q4'),index_date)
            df=pd.concat([df1,df2,df3,df4], axis=0)
            df.iloc[np.random.permutation(len(df))]
            y=df['status'].values.tolist()
            del(df['status'])
            log.info("<===== shape of training dataset @ %s", str(df.shape))
            X=np.array(df.replace('NaN', 9999).values.tolist())
    
            X=preprocessing.scale(X)
    
            clf = svm.SVC(kernel=str("linear"), C=1.0)
            clf.fit(X, y)
            
            filename = "temp.pkl"
            pickle_file = open(filename, 'wb')
            pickle.dump(clf, pickle_file)
            pickle_file.close()
            g.train=False
        
        filename = "temp.pkl"
        pickle_file = open(filename, 'rb')
        clf = pickle.load(pickle_file)
        
        year=context.current_dt.year
        month=context.current_dt.month
        day=context.current_dt.day
        index_date=str(year)+'-'+str(month)+'-'+str(day)
    
        SZ1=get_index_stocks('399008.XSHE', date=index_date)
        SZ2=get_index_stocks('399012.XSHE', date=index_date)
        SH=get_index_stocks('399905.XSHE', date=index_date)
        index=SZ1+SZ2+SH
        
        X, index2=fundamental(index)
    
        for each in range(0, len(index2)):
            if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 1 and index2[each] not in context.portfolio.positions.keys():
                log.info("===================Buying:", index2[each])
                order_target_value(index2[each], context.portfolio.cash/5)
            if clf.predict(X[each].reshape(1,X.shape[1]))[0] == 0 and index2[each] in context.portfolio.positions.keys():
                log.info("<<<<<<<<<<<<<<<<<<Holding:", context.portfolio.positions.keys())
                log.info("-------------------selling:", index2[each])
                order_target(index2[each], 0)
            
    # 止损
    
        if context.portfolio.positions:
            for stock in context.portfolio.positions.keys():
                cur_price = data[stock].close
                position=context.portfolio.positions[stock]
                if cur_price > position.avg_cost * (1 + 0.5) or cur_price < position.avg_cost * (1 - 0.2):
                    order_target(stock, 0)
                    log.info("<<<<<<<<<<<", stock, "%s lose:", 1-cur_price/position.avg_cost)
    
    
    
    
    
    
        
    

      https://www.joinquant.com/

    https://zhuanlan.zhihu.com/p/24649311

  • 相关阅读:
    关于图片标签 <img src=" " alt=" "/> 中的 src 属性消失不见了的问题
    谷歌邮箱无法显示使用 Base64 处理的图片的解决方法
    初等数学问题解答-5:一个Fermat方程的简化形式
    初等数学问题解答-4:无理方程求解
    初等数学问题解答-3:数的整除性
    初等数学问题解答-2:11的整除性
    初等数学问题解答-1:九九乘法表的趣题
    10%的高考数学题小学生全做对了,你呢?
    猿辅导2017年春季初联训练营作业题解答-7: "高次方程组"
    猿辅导2017年春季初联训练营作业题解答-6: "一元二次方程-3"
  • 原文地址:https://www.cnblogs.com/javastart/p/9751775.html
Copyright © 2020-2023  润新知