• cf div2 235 D


    D. Roman and Numbers
    time limit per test
    4 seconds
    memory limit per test
    512 megabytes
    input
    standard input
    output
    standard output

    Roman is a young mathematician, very famous in Uzhland. Unfortunately, Sereja doesn't think so. To make Sereja change his mind, Roman is ready to solve any mathematical problem. After some thought, Sereja asked Roma to find, how many numbers are close to number n, modulo m.

    Number x is considered close to number n modulo m, if:

    • it can be obtained by rearranging the digits of number n,
    • it doesn't have any leading zeroes,
    • the remainder after dividing number x by m equals 0.

    Roman is a good mathematician, but the number of such numbers is too huge for him. So he asks you to help him.

    Input

    The first line contains two integers: n (1 ≤ n < 1018) and m (1 ≤ m ≤ 100).

    Output

    In a single line print a single integer — the number of numbers close to number n modulo m.

    Sample test(s)
    input
    104 2
    output
    3
    input
    223 4
    output
    1
    input
    7067678 8
    output
    47
    Note

    In the first sample the required numbers are: 104, 140, 410.

    In the second sample the required number is 232.

    状态DP  dp[S | (1 << j) ][(k * 10 + a[j])] += dp[S][k];  ( s 里不包括 第j 个元素)

    dp[S][k] 代表 取s 代表 所取的元素集合,k代表对m的取模,则这个数组代表在这一状态的数目

     1 #include <cstdio>
     2 #include <cstring>
     3 #include <algorithm>
     4 #include <iostream>
     5 #include <cmath>
     6 #include <bitset>
     7 
     8 using namespace std;
     9 
    10 typedef long long ll;
    11 
    12 #define maxn (1 << 18)
    13 
    14 ll dp[maxn][105],fac[20];
    15 int s[105],num[10];
    16 int m,len = 0;
    17 ll n;
    18 
    19 
    20 
    21 void init() {
    22         ll t = n;
    23         while(t) {
    24                 s[len++] = t % 10;
    25                 num[t % 10]++;
    26                 t /= 10;
    27         }
    28 
    29         fac[0] = 1;
    30         for(int i = 1; i <= 18; i++) {
    31                 fac[i] = fac[i - 1] * i;
    32         }
    33 
    34 
    35 
    36         for(int S = 1; S < (1 << len); S++) {
    37                 for(int j = 0; j < m; j++) {
    38                         dp[S][j] = 0;
    39                 }
    40         }
    41 }
    42 
    43 void solve() {
    44         init();
    45 
    46         dp[0][0] = 1;
    47 
    48         for(int S = 0; S <  (1 << len); ++S) {
    49                 for(int j = 0; j < len; ++j) {
    50                         if(!(S & (1 << j))) {
    51                                 for(int k = 0; k < m; ++k) {
    52                                         if(S || s[j])
    53                                                 dp[S | (1 << j)][(k * 10 + s[j]) % m]
    54                                                 += dp[S][k];
    55 
    56                                 }
    57                         }
    58 
    59 
    60                 }
    61 
    62         }
    63 
    64         for(int i = 0; i < 10; i++) {
    65                 if(num[i] > 1) {
    66                         dp[(1 << len) - 1][0] /= fac[ num[i] ];
    67                 }
    68 
    69         }
    70         printf("%I64d
    ",dp[(1 << len) - 1][0]);
    71 
    72 
    73 }
    74 
    75 int main () {
    76 
    77     //freopen("sw.in","r",stdin);
    78 
    79     scanf("%I64d%d",&n,&m);
    80 
    81     solve();
    82 
    83     return 0;
    84 
    85 
    86 
    87 }
    View Code
  • 相关阅读:
    C++中逻辑操作符的重载分析
    不要62
    P1052 过河
    P1029 最大公约数和最小公倍数问题
    P1345 [USACO5.4]奶牛的电信Telecowmunication
    Dining
    Dinic
    [Scoi2015]小凸玩矩阵
    12.16
    bzoj 3529
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3595203.html
Copyright © 2020-2023  润新知