• AI之微信跳一跳


    需要环境:1,Python3.6

         2,android手机

         3,ADB驱动,下载地址https://adb.clockworkmod.com/

    步骤:

    配置Python3,ADB安装目录到环境变量path中

    安装算法库,python3.6中的pip命令需要到Python36Scripts目录下执行 依次安装需要的numpy matplotlib PIL算法库

    (手动安装算法库地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/)

    命令行安装:

    注意:PIL算法库的安装命令应该为pip install Pillow 而不是pip install PIL

    原理:

    1. 将手机点击到《跳一跳》小程序界面;
    2. 用 ADB 工具获取当前手机截图,并用 ADB 将截图 pull 上来
    adb shell screencap -p /sdcard/autojump.png adb pull /sdcard/autojump.png .
    1. 计算按压时间

          手动版:用 Matplotlib 显示截图,用鼠标点击起始点和目标位置,计算像素距离;

          自动版:靠棋子的颜色来识别棋子,靠底色和方块的色差来识别棋盘;

    1. 用 ADB 工具点击屏幕蓄力一跳;
    adb shell input swipe x y x y time(ms)

    手动执行的Python代码:

    #encoding:utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.animation as animation
    from PIL import Image
    import math
    import time
    import os
    
    def pull_screenshot():
        os.system('adb shell screencap -p /sdcard/autojump.png')
        os.system('adb pull /sdcard/autojump.png .')
    
    def jump(distance):
        press_time = distance * 1.35
        press_time = int(press_time)
        cmd = 'adb shell input swipe 320 410 320 410 ' + str(press_time)
        print(cmd)
        os.system(cmd)
    
    fig = plt.figure()
    index = 0
    cor = [0, 0]
    
    pull_screenshot()
    img = np.array(Image.open('autojump.png'))
    
    update = True 
    click_count = 0
    cor = []
    
    def update_data():
        return np.array(Image.open('autojump.png'))
    
    im = plt.imshow(img, animated=True)
    
    
    def updatefig(*args):
        global update
        if update:
            time.sleep(1.5)
            pull_screenshot()
            im.set_array(update_data())
            update = False
        return im,
    
    def onClick(event):      
        global update    
        global ix, iy
        global click_count
        global cor
    
        # next screenshot
        
        ix, iy = event.xdata, event.ydata
        coords = []
        coords.append((ix, iy))
        print('now = ', coords)
        cor.append(coords)
        
    
        click_count += 1
        if click_count > 1:
            click_count = 0
            
            cor1 = cor.pop()
            cor2 = cor.pop()
    
            distance = (cor1[0][0] - cor2[0][0])**2 + (cor1[0][1] - cor2[0][1])**2 
            distance = distance ** 0.5
            print('distance = ', distance)
            jump(distance)
            update = True
            
    
    
    fig.canvas.mpl_connect('button_press_event', onClick)
    ani = animation.FuncAnimation(fig, updatefig, interval=50, blit=True)
    plt.show()
    

     自动执行的Python代码:

    # coding: utf-8
    '''
    # === 思路 ===
    # 核心:每次落稳之后截图,根据截图算出棋子的坐标和下一个块顶面的中点坐标,
    #      根据两个点的距离乘以一个时间系数获得长按的时间
    # 识别棋子:靠棋子的颜色来识别位置,通过截图发现最下面一行大概是一条直线,就从上往下一行一行遍历,
    #      比较颜色(颜色用了一个区间来比较)找到最下面的那一行的所有点,然后求个中点,
    #      求好之后再让 Y 轴坐标减小棋子底盘的一半高度从而得到中心点的坐标
    # 识别棋盘:靠底色和方块的色差来做,从分数之下的位置开始,一行一行扫描,由于圆形的块最顶上是一条线,
    #      方形的上面大概是一个点,所以就用类似识别棋子的做法多识别了几个点求中点,
    #      这时候得到了块中点的 X 轴坐标,这时候假设现在棋子在当前块的中心,
    #      根据一个通过截图获取的固定的角度来推出中点的 Y 坐标
    # 最后:根据两点的坐标算距离乘以系数来获取长按时间(似乎可以直接用 X 轴距离)
    '''
    import os
    import sys
    import subprocess
    import time
    import math
    from PIL import Image
    import random
    from six.moves import input
    try:
        from common import debug, config
    except ImportError:
        print('请在项目根目录中运行脚本')
        exit(-1)
    
    
    VERSION = "1.1.1"
    
    
    debug_switch = False    # debug 开关,需要调试的时候请改为:True
    config = config.open_accordant_config()
    
    # Magic Number,不设置可能无法正常执行,请根据具体截图从上到下按需设置,设置保存在 config 文件夹中
    under_game_score_y = config['under_game_score_y']
    press_coefficient = config['press_coefficient']       # 长按的时间系数,请自己根据实际情况调节
    piece_base_height_1_2 = config['piece_base_height_1_2']   # 二分之一的棋子底座高度,可能要调节
    piece_body_width = config['piece_body_width']             # 棋子的宽度,比截图中量到的稍微大一点比较安全,可能要调节
    
    
    screenshot_way = 2
    
    
    def pull_screenshot():
        '''
        新的方法请根据效率及适用性由高到低排序
        '''
        global screenshot_way
        if screenshot_way == 2 or screenshot_way == 1:
            process = subprocess.Popen('adb shell screencap -p', shell=True, stdout=subprocess.PIPE)
            screenshot = process.stdout.read()
            if screenshot_way == 2:
                binary_screenshot = screenshot.replace(b'
    ', b'
    ')
            else:
                binary_screenshot = screenshot.replace(b'
    
    ', b'
    ')
            f = open('autojump.png', 'wb')
            f.write(binary_screenshot)
            f.close()
        elif screenshot_way == 0:
            os.system('adb shell screencap -p /sdcard/autojump.png')
            os.system('adb pull /sdcard/autojump.png .')
    
    
    def set_button_position(im):
        '''
        将 swipe 设置为 `再来一局` 按钮的位置
        '''
        global swipe_x1, swipe_y1, swipe_x2, swipe_y2
        w, h = im.size
        left = int(w / 2)
        top = int(1584 * (h / 1920.0))
        left = int(random.uniform(left-50, left+50))
        top = int(random.uniform(top-10, top+10))    # 随机防 ban
        swipe_x1, swipe_y1, swipe_x2, swipe_y2 = left, top, left, top
    
    
    def jump(distance):
        '''
        跳跃一定的距离
        '''
        press_time = distance * press_coefficient
        press_time = max(press_time, 200)   # 设置 200ms 是最小的按压时间
        press_time = int(press_time)
        cmd = 'adb shell input swipe {x1} {y1} {x2} {y2} {duration}'.format(
            x1=swipe_x1,
            y1=swipe_y1,
            x2=swipe_x2,
            y2=swipe_y2,
            duration=press_time
        )
        print(cmd)
        os.system(cmd)
        return press_time
    
    
    def find_piece_and_board(im):
        '''
        寻找关键坐标
        '''
        w, h = im.size
    
        piece_x_sum = 0
        piece_x_c = 0
        piece_y_max = 0
        board_x = 0
        board_y = 0
        scan_x_border = int(w / 8)  # 扫描棋子时的左右边界
        scan_start_y = 0  # 扫描的起始 y 坐标
        im_pixel = im.load()
        # 以 50px 步长,尝试探测 scan_start_y
        for i in range(int(h / 3), int(h*2 / 3), 50):
            last_pixel = im_pixel[0, i]
            for j in range(1, w):
                pixel = im_pixel[j, i]
                # 不是纯色的线,则记录 scan_start_y 的值,准备跳出循环
                if pixel[0] != last_pixel[0] or pixel[1] != last_pixel[1] or pixel[2] != last_pixel[2]:
                    scan_start_y = i - 50
                    break
            if scan_start_y:
                break
        print('scan_start_y: {}'.format(scan_start_y))
    
        # 从 scan_start_y 开始往下扫描,棋子应位于屏幕上半部分,这里暂定不超过 2/3
        for i in range(scan_start_y, int(h * 2 / 3)):
            for j in range(scan_x_border, w - scan_x_border):  # 横坐标方面也减少了一部分扫描开销
                pixel = im_pixel[j, i]
                # 根据棋子的最低行的颜色判断,找最后一行那些点的平均值,这个颜色这样应该 OK,暂时不提出来
                if (50 < pixel[0] < 60) and (53 < pixel[1] < 63) and (95 < pixel[2] < 110):
                    piece_x_sum += j
                    piece_x_c += 1
                    piece_y_max = max(i, piece_y_max)
    
        if not all((piece_x_sum, piece_x_c)):
            return 0, 0, 0, 0
        piece_x = int(piece_x_sum / piece_x_c)
        piece_y = piece_y_max - piece_base_height_1_2  # 上移棋子底盘高度的一半
    
        # 限制棋盘扫描的横坐标,避免音符 bug
        if piece_x < w/2:
            board_x_start = piece_x
            board_x_end = w
        else:
            board_x_start = 0
            board_x_end = piece_x
    
        for i in range(int(h / 3), int(h * 2 / 3)):
            last_pixel = im_pixel[0, i]
            if board_x or board_y:
                break
            board_x_sum = 0
            board_x_c = 0
    
            for j in range(int(board_x_start), int(board_x_end)):
                pixel = im_pixel[j, i]
                # 修掉脑袋比下一个小格子还高的情况的 bug
                if abs(j - piece_x) < piece_body_
                    continue
    
                # 修掉圆顶的时候一条线导致的小 bug,这个颜色判断应该 OK,暂时不提出来
                if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) > 10:
                    board_x_sum += j
                    board_x_c += 1
            if board_x_sum:
                board_x = board_x_sum / board_x_c
        last_pixel = im_pixel[board_x, i]
    
        # 从上顶点往下 +274 的位置开始向上找颜色与上顶点一样的点,为下顶点
        # 该方法对所有纯色平面和部分非纯色平面有效,对高尔夫草坪面、木纹桌面、药瓶和非菱形的碟机(好像是)会判断错误
        for k in range(i+274, i, -1): # 274 取开局时最大的方块的上下顶点距离
            pixel = im_pixel[board_x, k]
            if abs(pixel[0] - last_pixel[0]) + abs(pixel[1] - last_pixel[1]) + abs(pixel[2] - last_pixel[2]) < 10:
                break
        board_y = int((i+k) / 2)
    
        # 如果上一跳命中中间,则下个目标中心会出现 r245 g245 b245 的点,利用这个属性弥补上一段代码可能存在的判断错误
        # 若上一跳由于某种原因没有跳到正中间,而下一跳恰好有无法正确识别花纹,则有可能游戏失败,由于花纹面积通常比较大,失败概率较低
        for l in range(i, i+200):
            pixel = im_pixel[board_x, l]
            if abs(pixel[0] - 245) + abs(pixel[1] - 245) + abs(pixel[2] - 245) == 0:
                board_y = l+10
                break
    
        if not all((board_x, board_y)):
            return 0, 0, 0, 0
    
        return piece_x, piece_y, board_x, board_y
    
    
    def check_screenshot():
        '''
        检查获取截图的方式
        '''
        global screenshot_way
        if os.path.isfile('autojump.png'):
            os.remove('autojump.png')
        if (screenshot_way < 0):
            print('暂不支持当前设备')
            sys.exit()
        pull_screenshot()
        try:
            Image.open('./autojump.png').load()
            print('采用方式 {} 获取截图'.format(screenshot_way))
        except Exception:
            screenshot_way -= 1
            check_screenshot()
    
    
    def yes_or_no(prompt, true_value='y', false_value='n', default=True):
        default_value = true_value if default else false_value
        prompt = '%s %s/%s [%s]: ' % (prompt, true_value, false_value, default_value)
        i = input(prompt)
        if not i:
            return default
        while True:
            if i == true_value:
                return True
            elif i == false_value:
                return False
            prompt = 'Please input %s or %s: ' % (true_value, false_value)
            i = input(prompt)
    
    
    def main():
        '''
        主函数
        '''
        op = yes_or_no('请确保手机打开了 ADB 并连接了电脑,然后打开跳一跳并【开始游戏】后再用本程序,确定开始?')
        if not op:
            print('bye')
            return
        print('程序版本号:{}'.format(VERSION))
        debug.dump_device_info()
        check_screenshot()
    
        i, next_rest, next_rest_time = 0, random.randrange(3, 10), random.randrange(5, 10)
        while True:
            pull_screenshot()
            im = Image.open('./autojump.png')
            # 获取棋子和 board 的位置
            piece_x, piece_y, board_x, board_y = find_piece_and_board(im)
            ts = int(time.time())
            print(ts, piece_x, piece_y, board_x, board_y)
            set_button_position(im)
            jump(math.sqrt((board_x - piece_x) ** 2 + (board_y - piece_y) ** 2))
            if debug_switch:
                debug.save_debug_screenshot(ts, im, piece_x, piece_y, board_x, board_y)
                debug.backup_screenshot(ts)
            i += 1
            if i == next_rest:
                print('已经连续打了 {} 下,休息 {}s'.format(i, next_rest_time))
                for j in range(next_rest_time):
                    sys.stdout.write('
    程序将在 {}s 后继续'.format(next_rest_time - j))
                    sys.stdout.flush()
                    time.sleep(1)
                print('
    继续')
                i, next_rest, next_rest_time = 0, random.randrange(30, 100), random.randrange(10, 60)
            time.sleep(random.uniform(0.9, 1.2))   # 为了保证截图的时候应落稳了,多延迟一会儿,随机值防 ban
    
    
    if __name__ == '__main__':
        main()
    

      github项目地址:https://github.com/wangshub/wechat_jump_game

  • 相关阅读:
    关于金蝶K3服务器更换硬件重新注册问题
    vCenter 忘记网页登录密码 / 重置密码
    首次使用docker有感
    NBI可视化平台快速入门教程(一)数据准备
    Mac版VSCode安装教程
    mysql学习笔记(二)
    mysql学习笔记(三)
    mysql学习笔记(四)
    vs版本对应关系
    TensorRT 记录
  • 原文地址:https://www.cnblogs.com/huxinga/p/8192016.html
Copyright © 2020-2023  润新知