1、相关准备
1.1 手写数字数据集
这篇博客上有.jpg格式的图片下载,附带标签信息,有需要的自行下载,博客附带百度云盘下载地址(手写数字.jpg 格式):http://blog.csdn.net/eddy_zheng/article/details/50496194
1.2深度学习框架
本实战基于caffe深度学习框架,需自行参考相关博客搭建环境,这里不再对如何搭建环境作介绍。
2、数据准备
2.1 准备训练与验证图像
准备好你想训练识别的图像数据之后,将其划分为训练集与验证集,并准备好对应的图像名称以及对应的标签信息。这里的验证集和测试集并是不同的,如下图所示,你可以这样简单的划分:
*这里要注意的是,图片名与对应的类别标签一定不能有错,不然你的训练就全乱套了。对了,图片名与标签之间对应一个 space 就可以了。
2.2 转换数据格式
以上工作准备完毕之后,还需将其转换为 caffe 训练的 lmdb 格式。找到你编译的图像转换 convert_imageset.exe 位置。如下我的 caffe bin目录:
转换训练数据:创建如下文件,写批处理命令:
内部代码如下所示,略作解释,1:是你转换图像 convert_imageset.exe 所在位置,2:转换图像数据所在的文件夹位置,3:接着是图像名称对应标签 .txt 文件,4:最后是生成的 lmdb 的位置及文件夹名字:
SET GLOG_logtostderr=1 C:UsersAdministratorDesktopcaffe-windows-masterinconvert_imageset.exe C:UsersAdministratorDesktopcaffe-windows-masterdataDigits rain C:UsersAdministratorDesktopcaffe-windows-masterdataDigits rain.txt C:UsersAdministratorDesktopcaffe-windows-masterdataDigitsmtrainldb pause
转换验证数据:操作同上,写批处理命令:
文件名:convert_imageldb_valset.bat
SET GLOG_logtostderr=1 C:UsersAdministratorDesktopcaffe-windows-masterinconvert_imageset.exe C:UsersAdministratorDesktopcaffe-windows-masterdataDigitsval C:UsersAdministratorDesktopcaffe-windows-masterdataDigitsval.txt C:UsersAdministratorDesktopcaffe-windows-masterdataDigitsmvalldb pause
3. 网络层参数
文件:train_val.prorotxt,参照 lenet-5 ; 注意将地址对应自己的转换数据的位置,代码如下:
name: "LeNet" layer { name: "mnist" transform_param { scale: 0.00390625 } type: "Data" top: "data" top: "label" data_param { source: "C:/Users/Administrator/Desktop/caffe-windows-master/data/Digits/mtrainldb" backend: LMDB batch_size: 80 } include: { phase: TRAIN } } layer { name: "mnist" transform_param { scale: 0.00390625 } type: "Data" top: "data" top: "label" data_param { source: "C:/Users/Administrator/Desktop/caffe-windows-master/data/Digits/mvalldb" backend: LMDB batch_size: 4 } include: { phase: TEST } } layer { name: "conv1" type: "Convolution" bottom: "data" top: "conv1" param { lr_mult: 1 #decay_mult: 1 } param { lr_mult: 2 #decay_mult: 0 } convolution_param { num_output: 120 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu2" type: "ReLU" bottom: "conv1" top: "conv1" } layer { name: "pool2" type: "Pooling" bottom: "conv1" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 1 } } layer { name: "norm2" type: "LRN" bottom: "pool2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv3" type: "Convolution" bottom: "norm2" top: "conv3" param { lr_mult: 1 #decay_mult: 1 } param { lr_mult: 2 #decay_mult: 0 } convolution_param { num_output: 180 kernel_size: 3 stride: 1 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu3" type: "ReLU" bottom: "conv3" top: "conv3" } layer { name: "pool3" type: "Pooling" bottom: "conv3" top: "pool3" pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layer { name: "norm3" type: "LRN" bottom: "pool3" top: "norm3" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "conv4" type: "Convolution" bottom: "norm3" top: "conv4" param { lr_mult: 1 #decay_mult: 1 } param { lr_mult: 2 #decay_mult: 0 } convolution_param { num_output: 210 kernel_size: 3 stride: 2 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu5" type: "ReLU" bottom: "conv4" top: "conv4" } layer { name: "pool5" type: "Pooling" bottom: "conv4" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 1 } } layer { name: "norm5" type: "LRN" bottom: "pool5" top: "norm5" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 } } layer { name: "ip1" type: "InnerProduct" bottom: "norm5" top: "ip1" param { lr_mult: 1 } param { lr_mult: 2 } inner_product_param { num_output: 256 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu7" type: "Insanity" bottom: "ip1" top: "ip1" } layer { name: "drop1" type: "Dropout" bottom: "ip1" top: "ip1" dropout_param { dropout_ratio: 0.5 } } layer { name: "ip2" type: "InnerProduct" bottom: "ip1" top: "ip2" param { lr_mult: 1 } param { lr_mult: 2 } inner_product_param { num_output: 512 weight_filler { type: "xavier" } bias_filler { type: "constant" } } } layer { name: "relu8" type: "Insanity" bottom: "ip2" top: "ip2" } layer { name: "drop2" type: "Dropout" bottom: "ip2" top: "ip2" dropout_param { dropout_ratio: 0.5 } } layer { name: "accuracy" type: "Accuracy" bottom: "ip2" bottom: "label" top: "accuracy" include { phase: TEST } } layer { name: "loss" type: "SoftmaxWithLoss" bottom: "ip2" bottom: "label" top: "loss" }
4. 开始训练
Digist 文件夹下创建, caffe.bat,内容如下:
LOG=log/train-`date +%Y-%m-%d-%H-%M-%S`.log C:UsersAdministratorDesktopcaffe-windows-masterincaffe.exe train --solver C:UsersAdministratorDesktopcaffe-windows-masterdataDigitssolver.prototxt pause
准备完成之后,双击 caffe.bat;