• 九度 1547 出入栈(递推DP)


    题目描述:

    给定一个初始为空的栈,和n个操作组成的操作序列,每个操作只可能是出栈或者入栈。
    要求在操作序列的执行过程中不会出现非法的操作,即不会在空栈时执行出栈操作,同时保证当操作序列完成后,栈恰好为一个空栈。
    求符合条件的操作序列种类。
    例如,4个操作组成的操作序列符合条件的如下:
    入栈,出栈,入栈,出栈
    入栈,入栈,出栈,出栈
    共2种。

    思路

    1. Leetcode 上有道类似的题目, 那道题求得是括号的总类, 当初用的是搜索法

    2. 搜索法超时, 分治法没想起什么好办法, 动规没头绪

    3. dp[i][j] (i>=j) 表示入栈 i 次出栈 j 次 的种类数

    4. dp[i][j] = dp[i-1][j] + dp[i][j-1]. 状态转移方程写出这样的依据应该在于讨论最后一位分别是 '(' 和 ')' 的情况. 就像 剑指offer 铺地板那题类似. 比如 dp[3][2], 当最后一位确定是 '(' 时, dp[3][2] = dp[2][2]; 当确定为 ')' 时, dp[3][2] = dp[3][1]. 如此看来, 这道题和自己以前做过的很多题目类似, 比如爬台阶, 比如方格寻路等等. 这些题目的共同特点是根据最后的状态位递推前面的所有可能性.

    5. 会看 leetcode 对应那题, 发现那道是打印路径, 所以搜索法并没超时

    代码 未能通过九度测试

    #include <iostream>
    #include <stdio.h>
    #include <memory.h>
    using namespace std;
    int dp[1200][1200];
    
    int find(int a, int b) {
        if(a < b) 
            return 0;
        if(dp[a][b] != 0)
            return dp[a][b];
        if(a == 0 || b == 0)
            return 0;
        int res = find(a-1,b) + find(a,b-1);
        if(res >= 1000000007 )
            res = res%1000000007;
        return (dp[a][b] = res);
    }
    int main() {
        freopen("testcase.txt", "r", stdin);
        int n;
        memset(dp, 0, sizeof(dp));
        for(int i = 0; i < 1010; i ++)
            dp[i][0] = 1;
        dp[1][1] = 1;
    
        while(scanf("%d", &n) != EOF) {
            int res = find(n/2,n/2);
            printf("%d
    ", res);
        }
        return 0;
    }
  • 相关阅读:
    基于keepalived双主模型的高可用LVS
    ViewFlipper实现ViewPager的页面切换效果
    C++,Python,Go对照学习-01
    matlab figure 调整大小、字体、线宽
    学术研究 —— 常用结论、说法
    学术研究 —— 常用结论、说法
    OpenGL(十六) 鼠标、键盘交互响应事件
    N+1:创新点的设计
    N+1:创新点的设计
    数学中的物理、几何概念与含义
  • 原文地址:https://www.cnblogs.com/xinsheng/p/3576480.html
Copyright © 2020-2023  润新知