• zoj 1450 Minimal Circle 最小覆盖圆


    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=450

    You are to write a program to find a circle which covers a set of points and has the minimal area. There will be no more than 100 points in one problem.

    题意描述:找到一个最小圆能够包含到所有的二维坐标点。

    算法分析:最小覆盖圆的做法。

      1 //最小覆盖圆
      2 #include<iostream>
      3 #include<cstdio>
      4 #include<cstring>
      5 #include<cstdlib>
      6 #include<cmath>
      7 #include<algorithm>
      8 #define inf 0x7fffffff
      9 #define exp 1e-10
     10 #define PI 3.141592654
     11 using namespace std;
     12 const int maxn=1000+10;
     13 struct Point
     14 {
     15     double x,y;
     16     Point(double x=0,double y=0):x(x),y(y){}
     17 }an[maxn],d;//d:最小覆盖圆的圆心坐标
     18 double r;//最小覆盖圆的半径
     19 typedef Point Vector;
     20 Vector operator + (Vector A,Vector B) {return Vector(A.x+B.x , A.y+B.y); }
     21 Vector operator - (Vector A,Vector B) {return Vector(A.x-B.x , A.y-B.y); }
     22 Vector operator * (Vector A,double p) {return Vector(A.x*p , A.y*p); }
     23 Vector operator / (Vector A,double p) {return Vector(A.x/p , A.y/p); }
     24 int dcmp(double x)
     25 {
     26     if (fabs(x)<exp) return 0;
     27     return x<0 ? -1 : 1;
     28 }
     29 double cross(Vector A,Vector B)
     30 {
     31     return A.x*B.y-B.x*A.y;
     32 }
     33 double dist(Vector A,Vector B)
     34 {
     35     double x=(A.x-B.x)*(A.x-B.x);
     36     double y=(A.y-B.y)*(A.y-B.y);
     37     return sqrt(x+y);
     38 }
     39 
     40 void MiniDiscWith2Point(Point p,Point q,int n)
     41 {
     42     d=(p+q)/2.0;
     43     r=dist(p,q)/2;
     44     int k;
     45     double c1,c2,t1,t2,t3;
     46     for (k=1 ;k<=n ;k++)
     47     {
     48         if (dist(d,an[k])<=r) continue;
     49         if (dcmp(cross(p-an[k],q-an[k]))!=0)
     50         {
     51             c1=(p.x*p.x+p.y*p.y-q.x*q.x-q.y*q.y)/2.0;
     52             c2=(p.x*p.x+p.y*p.y-an[k].x*an[k].x-an[k].y*an[k].y)/2.0;
     53             d.x=(c1*(p.y-an[k].y)-c2*(p.y-q.y))/((p.x-q.x)*(p.y-an[k].y)-(p.x-an[k].x)*(p.y-q.y));
     54             d.y=(c1*(p.x-an[k].x)-c2*(p.x-q.x))/((p.y-q.y)*(p.x-an[k].x)-(p.y-an[k].y)*(p.x-q.x));
     55             r=dist(d,an[k]);
     56         }
     57         else
     58         {
     59             t1=dist(p,q);
     60             t2=dist(q,an[k]);
     61             t3=dist(p,an[k]);
     62             if (t1>=t2 && t1>=t3)
     63             {
     64                 d=(p+q)/2.0;
     65                 r=dist(p,q)/2.0;
     66             }
     67             else if (t2>=t1 && t2>=t3)
     68             {
     69                 d=(an[k]+q)/2.0;
     70                 r=dist(an[k],q)/2.0;
     71             }
     72             else
     73             {
     74                 d=(an[k]+p)/2.0;
     75                 r=dist(an[k],p)/2.0;
     76             }
     77         }
     78     }
     79 }
     80 void MiniDiscWithPoint(Point p,int n)
     81 {
     82     d=(p+an[1])/2.0;
     83     r=dist(p,an[1])/2.0;
     84     int j;
     85     for (j=2 ;j<=n ;j++)
     86     {
     87         if (dist(d,an[j])<=r) continue;
     88         else
     89         {
     90             MiniDiscWith2Point(p,an[j],j-1);
     91         }
     92     }
     93 }
     94 
     95 int main()
     96 {
     97     int n;
     98     while (scanf("%d",&n)!=EOF && n)
     99     {
    100         for (int i=1 ;i<=n ;i++)
    101         {
    102             scanf("%lf%lf",&an[i].x,&an[i].y);
    103         }
    104         if (n==1)
    105         {
    106             printf("%lf %lf
    ",an[1].x,an[1].y);
    107             continue;
    108         }
    109         r=dist(an[1],an[2])/2.0;
    110         d=(an[1]+an[2])/2.0;
    111         for (int i=3 ;i<=n ;i++)
    112         {
    113             if (dist(d,an[i])<=r) continue;
    114             else
    115             MiniDiscWithPoint(an[i],i-1);
    116         }
    117         printf("%.2lf %.2lf %.2lf
    ",d.x,d.y,r);
    118     }
    119     return 0;
    120 }
  • 相关阅读:
    【学习总结】 小白CS成长之路
    Java程序员面试题收集(1)
    ECSTORE2.0 去页面底部版权
    vue-cli安装
    linux下安装nodejs
    Access denied for user 'root'@'localhost' (using password: YES)的解决
    想说的话
    十三:CSS之CSS的四种使用方法和优先级
    十二:CSS之基础语法
    十一:HTML之实现基本网页结构
  • 原文地址:https://www.cnblogs.com/huangxf/p/4374006.html
Copyright © 2020-2023  润新知