• Pytorch实现MNIST手写数字识别


    Pytorch是热门的深度学习框架之一,通过经典的MNIST 数据集进行快速的pytorch入门。

    导入库

    from torchvision.datasets import MNIST
    from torchvision.transforms import ToTensor, Compose, Normalize
    from torch.utils.data import DataLoader
    import torch
    import torch.nn.functional as F
    import torch.nn as nn
    import os
    import numpy as np
    

    准备数据集

    path = './data'
    
    # 使用Compose 将tensor化和正则化操作打包
    transform_fn = Compose([
        ToTensor(),
        Normalize(mean=(0.1307,), std=(0.3081,))
    ])
    mnist_dataset = MNIST(root=path, train=True, transform=transform_fn)
    
    data_loader = torch.utils.data.DataLoader(dataset=mnist_dataset, batch_size=2, shuffle=True)
    
    # 1. 构建函数,数据集预处理
    BATCH_SIZE = 128
    TEST_BATCH_SIZE = 1000
    def get_dataloader(train=True, batch_size=BATCH_SIZE):
        '''
        train=True, 获取训练集
        train=False 获取测试集
        '''
        transform_fn = Compose([
            ToTensor(),
            Normalize(mean=(0.1307,), std=(0.3081,))
        ])
        dataset = MNIST(root='./data', train=train, transform=transform_fn)
        data_loader = DataLoader(dataset=dataset, batch_size=BATCH_SIZE, shuffle=True)
        return data_loader
    

    构建模型

    
    class MnistModel(nn.Module):
        def __init__(self):
            super().__init__()  # 继承父类
            self.fc1 = nn.Linear(1*28*28, 28)  # 添加全连接层
            self.fc2 = nn.Linear(28, 10)
            
        def forward(self, input):
            x = input.view(-1, 1*28*28)
            x = self.fc1(x)
            x = F.relu(x)
            out = self.fc2(x)
            return F.log_softmax(out, dim=-1)  # log_softmax 与 nll_loss合用,计算交叉熵
            
    

    模型训练

    mnist_model = MnistModel()
    optimizer = torch.optim.Adam(params=mnist_model.parameters(), lr=0.001)
    
    # 如果有模型则加载
    if os.path.exists('./model'):
        mnist_model.load_state_dict(torch.load('model/mnist_model.pkl'))
        optimizer.load_state_dict(torch.load('model/optimizer.pkl'))
    
    
    def train(epoch):
        data_loader = get_dataloader()
        
        for index, (data, target) in enumerate(data_loader):
            optimizer.zero_grad()  # 梯度先清零
            output = mnist_model(data)
            loss = F.nll_loss(output, target)
            loss.backward()  # 误差反向传播计算
            optimizer.step()  # 更新梯度
            
            if index % 100 == 0:
                # 保存训练模型
                torch.save(mnist_model.state_dict(), 'model/mnist_model.pkl')
                torch.save(optimizer.state_dict(), 'model/optimizer.pkl')
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, index * len(data), len(data_loader.dataset),
                           100. * index / len(data_loader), loss.item()))
    
    for i in range(epoch=5):
        train(i)
    
    Train Epoch: 0 [0/60000 (0%)]	Loss: 0.023078
    Train Epoch: 0 [12800/60000 (21%)]	Loss: 0.019347
    Train Epoch: 0 [25600/60000 (43%)]	Loss: 0.105870
    Train Epoch: 0 [38400/60000 (64%)]	Loss: 0.050866
    Train Epoch: 0 [51200/60000 (85%)]	Loss: 0.097995
    Train Epoch: 1 [0/60000 (0%)]	Loss: 0.108337
    Train Epoch: 1 [12800/60000 (21%)]	Loss: 0.071196
    Train Epoch: 1 [25600/60000 (43%)]	Loss: 0.022856
    Train Epoch: 1 [38400/60000 (64%)]	Loss: 0.028392
    Train Epoch: 1 [51200/60000 (85%)]	Loss: 0.070508
    Train Epoch: 2 [0/60000 (0%)]	Loss: 0.037416
    Train Epoch: 2 [12800/60000 (21%)]	Loss: 0.075977
    Train Epoch: 2 [25600/60000 (43%)]	Loss: 0.024356
    Train Epoch: 2 [38400/60000 (64%)]	Loss: 0.042203
    Train Epoch: 2 [51200/60000 (85%)]	Loss: 0.020883
    Train Epoch: 3 [0/60000 (0%)]	Loss: 0.023487
    Train Epoch: 3 [12800/60000 (21%)]	Loss: 0.024403
    Train Epoch: 3 [25600/60000 (43%)]	Loss: 0.073619
    Train Epoch: 3 [38400/60000 (64%)]	Loss: 0.074042
    Train Epoch: 3 [51200/60000 (85%)]	Loss: 0.036283
    Train Epoch: 4 [0/60000 (0%)]	Loss: 0.021305
    Train Epoch: 4 [12800/60000 (21%)]	Loss: 0.062750
    Train Epoch: 4 [25600/60000 (43%)]	Loss: 0.016911
    Train Epoch: 4 [38400/60000 (64%)]	Loss: 0.039599
    Train Epoch: 4 [51200/60000 (85%)]	Loss: 0.026689
    

    模型测试

    def test():
        loss_list = []
        acc_list = []
        
        test_loader = get_dataloader(train=False, batch_size = TEST_BATCH_SIZE)
        mnist_model.eval()  # 设为评估模式
        
        for index, (data, target) in enumerate(test_loader):
            with torch.no_grad():
                out = mnist_model(data)
                loss = F.nll_loss(out, target)
                loss_list.append(loss)
                
                pred = out.data.max(1)[1]
                acc = pred.eq(target).float().mean()  # eq()函数用于将两个tensor中的元素对比,返回布尔值
                acc_list.append(acc)
               
            
        print('平均准确率, 平均损失', np.mean(acc_list), np.mean(loss_list))
    
    
    test()
    
    平均准确率, 平均损失 0.9662777 0.12309619
  • 相关阅读:
    docker容器的基本操作
    python3 Softmax函数
    变量命名 函数命名 方法 Naming cheatsheet
    [操作系统]LINUX进程状态说明
    Pytorch Linear ()简单推导
    [ubuntu18.04 python3.6] 清华源 CondaHTTPError: HTTP 000 CONNECTION
    /proc/meminfo 解释
    神经网络 CNN 名词解释
    C++ 运行时多态
    Rust 与 Windows 的字符串编码问题
  • 原文地址:https://www.cnblogs.com/hp-lake/p/12747924.html
Copyright © 2020-2023  润新知