• spark的运行指标监控


    
    

    sparkUi的4040界面已经有了运行监控指标,为什么我们还要自定义存入redis?

    1.结合自己的业务,可以将监控页面集成到自己的数据平台内,方便问题查找,邮件告警

    2.可以在sparkUi的基础上,添加一些自己想要指标统计

    一、spark的SparkListener
    sparkListener是一个接口,我们使用时需要自定义监控类实现sparkListener接口中的各种抽象方法,SparkListener 下各个事件对应的函数名非常直白,即如字面所表达意思。 想对哪个阶段的事件做一些自定义的动作,变继承SparkListener实现对应的函数即可,这些方法会帮助我监控spark运行时各个阶段的数据量,从而我们可以获得这些监控指标数据

    abstract class SparkListener extends SparkListenerInterface {
    //stage完成的时调用 override def onStageCompleted(stageCompleted: SparkListenerStageCompleted): Unit = { }
    //stage提交时调用 override def onStageSubmitted(stageSubmitted: SparkListenerStageSubmitted): Unit = { } override def onTaskStart(taskStart: SparkListenerTaskStart): Unit = { } override def onTaskGettingResult(taskGettingResult: SparkListenerTaskGettingResult): Unit = { } //task结束时调用 override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { } override def onJobStart(jobStart: SparkListenerJobStart): Unit = { } override def onJobEnd(jobEnd: SparkListenerJobEnd): Unit = { } override def onEnvironmentUpdate(environmentUpdate: SparkListenerEnvironmentUpdate): Unit = { } override def onBlockManagerAdded(blockManagerAdded: SparkListenerBlockManagerAdded): Unit = { } override def onBlockManagerRemoved( blockManagerRemoved: SparkListenerBlockManagerRemoved): Unit = { } override def onUnpersistRDD(unpersistRDD: SparkListenerUnpersistRDD): Unit = { } override def onApplicationStart(applicationStart: SparkListenerApplicationStart): Unit = { } override def onApplicationEnd(applicationEnd: SparkListenerApplicationEnd): Unit = { } override def onExecutorMetricsUpdate( executorMetricsUpdate: SparkListenerExecutorMetricsUpdate): Unit = { } override def onExecutorAdded(executorAdded: SparkListenerExecutorAdded): Unit = { } override def onExecutorRemoved(executorRemoved: SparkListenerExecutorRemoved): Unit = { } override def onBlockUpdated(blockUpdated: SparkListenerBlockUpdated): Unit = { } override def onOtherEvent(event: SparkListenerEvent): Unit = { } }

    1.实现自己SparkListener,对onTaskEnd方法是指标存入redis

    (1)SparkListener是一个接口,创建一个MySparkAppListener类继承SparkListener,实现里面的onTaskEnd即可

    (2)方法:override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = { }

      SparkListenerTaskEnd类:

    case class SparkListenerTaskEnd(
                                     //spark的stageId
                                     stageId: Int,
                                     //尝试的阶段Id(也就是下级Stage?)
                                     stageAttemptId: Int,
                                     taskType: String,
                                     reason: TaskEndReason,
                                     //task信息
                                     taskInfo: TaskInfo,
                                     // task指标
                                     @Nullable taskMetrics: TaskMetrics)
      extends SparkListenerEvent
    

      

    (3)在 onTaskEnd方法内可以通过成员taskinfo与taskMetrics获取的信息

    /**
    * 1、taskMetrics
    * 2、shuffle
    * 3、task运行(input output)
    * 4、taskInfo
    **/
    (4)TaskMetrics可以获取的监控信息
    class TaskMetrics private[spark] () extends Serializable {
      // Each metric is internally represented as an accumulator
      private val _executorDeserializeTime = new LongAccumulator
      private val _executorDeserializeCpuTime = new LongAccumulator
      private val _executorRunTime = new LongAccumulator
      private val _executorCpuTime = new LongAccumulator
      private val _resultSize = new LongAccumulator
      private val _jvmGCTime = new LongAccumulator
      private val _resultSerializationTime = new LongAccumulator
      private val _memoryBytesSpilled = new LongAccumulator
      private val _diskBytesSpilled = new LongAccumulator
      private val _peakExecutionMemory = new LongAccumulator
      private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
    val inputMetrics: InputMetrics = new InputMetrics()
    
    /**
     * Metrics related to writing data externally (e.g. to a distributed filesystem),
     * defined only in tasks with output.
     */
    val outputMetrics: OutputMetrics = new OutputMetrics()
    
    /**
     * Metrics related to shuffle read aggregated across all shuffle dependencies.
     * This is defined only if there are shuffle dependencies in this task.
     */
    val shuffleReadMetrics: ShuffleReadMetrics = new ShuffleReadMetrics()
    
    /**
     * Metrics related to shuffle write, defined only in shuffle map stages.
     */
    val shuffleWriteMetrics: ShuffleWriteMetrics = new ShuffleWriteMetrics()

    (5)代码实现并存入redis

    /**
     * 需求1.想自定义spark的job运行情况存入redis,集成到自己的业务后台展示中
     */
    class MySparkAppListener extends SparkListener with Logging {
    
      val redisConf = "jedisConfig.properties"
    
      val jedis: Jedis = JedisUtil.getInstance().getJedis
    
      //父类的第一个方法
      override def onTaskEnd(taskEnd: SparkListenerTaskEnd): Unit = {
        //在 onTaskEnd方法内可以获取的信息有
        /**
         * 1、taskMetrics
         * 2、shuffle
         * 3、task运行(input output)
         * 4、taskInfo
         **/
    
        val currentTimestamp = System.currentTimeMillis()
        // TaskMetrics(task的指标)可以拿到的指标
        /**
         * private val _executorDeserializeTime = new LongAccumulator
         * private val _executorDeserializeCpuTime = new LongAccumulator
         * private val _executorRunTime = new LongAccumulator
         * private val _executorCpuTime = new LongAccumulator
         * private val _resultSize = new LongAccumulator
         * private val _jvmGCTime = new LongAccumulator
         * private val _resultSerializationTime = new LongAccumulator
         * private val _memoryBytesSpilled = new LongAccumulator
         * private val _diskBytesSpilled = new LongAccumulator
         * private val _peakExecutionMemory = new LongAccumulator
         * private val _updatedBlockStatuses = new CollectionAccumulator[(BlockId, BlockStatus)]
         */
        val metrics = taskEnd.taskMetrics
        val taskMetricsMap = scala.collection.mutable.HashMap(
          "executorDeserializeTime" -> metrics.executorDeserializeTime, //executor的反序列化时间
          "executorDeserializeCpuTime" -> metrics.executorDeserializeCpuTime, //executor的反序列化的 cpu时间
          "executorRunTime" -> metrics.executorRunTime, //executoor的运行时间
          "resultSize" -> metrics.resultSize, //结果集大小
          "jvmGCTime" -> metrics.jvmGCTime, //
          "resultSerializationTime" -> metrics.resultSerializationTime,
          "memoryBytesSpilled" -> metrics.memoryBytesSpilled, //内存溢写的大小
          "diskBytesSpilled" -> metrics.diskBytesSpilled, //溢写到磁盘的大小
          "peakExecutionMemory" -> metrics.peakExecutionMemory //executor的最大内存
        )
    
        val jedisKey = "taskMetrics_" + {
          currentTimestamp
        }
        jedis.set(jedisKey, Json(DefaultFormats).write(jedisKey))
        jedis.pexpire(jedisKey, 3600)
    
    
        //======================shuffle指标================================
        val shuffleReadMetrics = metrics.shuffleReadMetrics
        val shuffleWriteMetrics = metrics.shuffleWriteMetrics
    
        //shuffleWriteMetrics shuffle读过程的指标有这些
        /**
         * private[executor] val _bytesWritten = new LongAccumulator
         * private[executor] val _recordsWritten = new LongAccumulator
         * private[executor] val _writeTime = new LongAccumulator
         */
        //shuffleReadMetrics shuffle写过程的指标有这些
        /**
         * private[executor] val _remoteBlocksFetched = new LongAccumulator
         * private[executor] val _localBlocksFetched = new LongAccumulator
         * private[executor] val _remoteBytesRead = new LongAccumulator
         * private[executor] val _localBytesRead = new LongAccumulator
         * private[executor] val _fetchWaitTime = new LongAccumulator
         * private[executor] val _recordsRead = new LongAccumulator
         */
    
        val shuffleMap = scala.collection.mutable.HashMap(
          "remoteBlocksFetched" -> shuffleReadMetrics.remoteBlocksFetched, //shuffle远程拉取数据块
          "localBlocksFetched" -> shuffleReadMetrics.localBlocksFetched, //本地块拉取
          "remoteBytesRead" -> shuffleReadMetrics.remoteBytesRead, //shuffle远程读取的字节数
          "localBytesRead" -> shuffleReadMetrics.localBytesRead, //读取本地数据的字节
          "fetchWaitTime" -> shuffleReadMetrics.fetchWaitTime, //拉取数据的等待时间
          "recordsRead" -> shuffleReadMetrics.recordsRead, //shuffle读取的记录总数
          "bytesWritten" -> shuffleWriteMetrics.bytesWritten, //shuffle写的总大小
          "recordsWritte" -> shuffleWriteMetrics.recordsWritten, //shuffle写的总记录数
          "writeTime" -> shuffleWriteMetrics.writeTime
        )
    
        val shuffleKey = s"shuffleKey${currentTimestamp}"
        jedis.set(shuffleKey, Json(DefaultFormats).write(shuffleMap))
        jedis.expire(shuffleKey, 3600)
    
        //=================输入输出========================
        val inputMetrics = taskEnd.taskMetrics.inputMetrics
        val outputMetrics = taskEnd.taskMetrics.outputMetrics
    
        val input_output = scala.collection.mutable.HashMap(
          "bytesRead" -> inputMetrics.bytesRead, //读取的大小
          "recordsRead" -> inputMetrics.recordsRead, //总记录数
          "bytesWritten" -> outputMetrics.bytesWritten,//输出的大小
          "recordsWritten" -> outputMetrics.recordsWritten//输出的记录数
        )
        val input_outputKey = s"input_outputKey${currentTimestamp}"
        jedis.set(input_outputKey, Json(DefaultFormats).write(input_output))
        jedis.expire(input_outputKey, 3600)
    
    
    
        //####################taskInfo#######
        val taskInfo: TaskInfo = taskEnd.taskInfo
    
        val taskInfoMap = scala.collection.mutable.HashMap(
          "taskId" -> taskInfo.taskId ,
          "host" -> taskInfo.host ,
          "speculative" -> taskInfo.speculative , //推测执行
          "failed" -> taskInfo.failed ,
          "killed" -> taskInfo.killed ,
          "running" -> taskInfo.running
    
        )
    
        val taskInfoKey = s"taskInfo${currentTimestamp}"
        jedis.set(taskInfoKey , Json(DefaultFormats).write(taskInfoMap))
        jedis.expire(taskInfoKey , 3600)
    
      }
    

    (5)程序测试

      sparkContext.addSparkListener方法添加自己监控主类

    sc.addSparkListener(new MySparkAppListener())

    使用wordcount进行简单测试

    二、spark实时监控

    1.StreamingListener是实时监控的接口,里面有数据接收成功、错误、停止、批次提交、开始、完成等指标,原理与上述相同

    trait StreamingListener {
    
      /** Called when a receiver has been started */
      def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { }
    
      /** Called when a receiver has reported an error */
      def onReceiverError(receiverError: StreamingListenerReceiverError) { }
    
      /** Called when a receiver has been stopped */
      def onReceiverStopped(receiverStopped: StreamingListenerReceiverStopped) { }
    
      /** Called when a batch of jobs has been submitted for processing. */
      def onBatchSubmitted(batchSubmitted: StreamingListenerBatchSubmitted) { }
    
      /** Called when processing of a batch of jobs has started.  */
      def onBatchStarted(batchStarted: StreamingListenerBatchStarted) { }
    
      /** Called when processing of a batch of jobs has completed. */
      def onBatchCompleted(batchCompleted: StreamingListenerBatchCompleted) { }
    
      /** Called when processing of a job of a batch has started. */
      def onOutputOperationStarted(
          outputOperationStarted: StreamingListenerOutputOperationStarted) { }
    
      /** Called when processing of a job of a batch has completed. */
      def onOutputOperationCompleted(
          outputOperationCompleted: StreamingListenerOutputOperationCompleted) { }
    }
    

    2.主要指标及用途

    1.onReceiverError 

    监控数据接收错误信息,进行邮件告警

    2.onBatchCompleted 该批次完成时调用该方法

    (1)sparkstreaming的偏移量提交时,当改批次执行完,才进行offset的保存入库,(该无法保证统计入库完成后程序中断、offset未提交)
    (2)批次处理时间大于了规定的窗口时间,程序出现阻塞,进行邮件告警

    三、spark、yarn的web返回接口进行数据解析,获取指标信息

    1.启动某个本地spark程序
    访问 :http://localhost:4040/metrics/json/,得到一串json数据,解析gauges,则可获取所有的信息
    {
        "version": "3.0.0", 
        "gauges": {
            "local-1581865176069.driver.BlockManager.disk.diskSpaceUsed_MB": {
                "value": 0
            }, 
            "local-1581865176069.driver.BlockManager.memory.maxMem_MB": {
                "value": 1989
            }, 
            "local-1581865176069.driver.BlockManager.memory.memUsed_MB": {
                "value": 0
            }, 
            "local-1581865176069.driver.BlockManager.memory.remainingMem_MB": {
                "value": 1989
            }, 
            "local-1581865176069.driver.DAGScheduler.job.activeJobs": {
                "value": 0
            }, 
            "local-1581865176069.driver.DAGScheduler.job.allJobs": {
                "value": 0
            }, 
            "local-1581865176069.driver.DAGScheduler.stage.failedStages": {
                "value": 0
            }, 
            "local-1581865176069.driver.DAGScheduler.stage.runningStages": {
                "value": 0
            }, 
            "local-1581865176069.driver.DAGScheduler.stage.waitingStages": {
                "value": 0
            }
        }, 
        "counters": {
            "local-1581865176069.driver.HiveExternalCatalog.fileCacheHits": {
                "count": 0
            }, 
            "local-1581865176069.driver.HiveExternalCatalog.filesDiscovered": {
                "count": 0
            }, 
            "local-1581865176069.driver.HiveExternalCatalog.hiveClientCalls": {
                "count": 0
            }, 
            "local-1581865176069.driver.HiveExternalCatalog.parallelListingJobCount": {
                "count": 0
            }, 
            "local-1581865176069.driver.HiveExternalCatalog.partitionsFetched": {
                "count": 0
            }
        }, 
        "histograms": {
            "local-1581865176069.driver.CodeGenerator.compilationTime": {
                "count": 0, 
                "max": 0, 
                "mean": 0, 
                "min": 0, 
                "p50": 0, 
                "p75": 0, 
                "p95": 0, 
                "p98": 0, 
                "p99": 0, 
                "p999": 0, 
                "stddev": 0
            }, 
            "local-1581865176069.driver.CodeGenerator.generatedClassSize": {
                "count": 0, 
                "max": 0, 
                "mean": 0, 
                "min": 0, 
                "p50": 0, 
                "p75": 0, 
                "p95": 0, 
                "p98": 0, 
                "p99": 0, 
                "p999": 0, 
                "stddev": 0
            }, 
            "local-1581865176069.driver.CodeGenerator.generatedMethodSize": {
                "count": 0, 
                "max": 0, 
                "mean": 0, 
                "min": 0, 
                "p50": 0, 
                "p75": 0, 
                "p95": 0, 
                "p98": 0, 
                "p99": 0, 
                "p999": 0, 
                "stddev": 0
            }, 
            "local-1581865176069.driver.CodeGenerator.sourceCodeSize": {
                "count": 0, 
                "max": 0, 
                "mean": 0, 
                "min": 0, 
                "p50": 0, 
                "p75": 0, 
                "p95": 0, 
                "p98": 0, 
                "p99": 0, 
                "p999": 0, 
                "stddev": 0
            }
        }, 
        "meters": { }, 
        "timers": {
            "local-1581865176069.driver.DAGScheduler.messageProcessingTime": {
                "count": 0, 
                "max": 0, 
                "mean": 0, 
                "min": 0, 
                "p50": 0, 
                "p75": 0, 
                "p95": 0, 
                "p98": 0, 
                "p99": 0, 
                "p999": 0, 
                "stddev": 0, 
                "m15_rate": 0, 
                "m1_rate": 0, 
                "m5_rate": 0, 
                "mean_rate": 0, 
                "duration_units": "milliseconds", 
                "rate_units": "calls/second"
            }
        }
    }

     解析json获取指标信息

        val diskSpaceUsed_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.disk.diskSpaceUsed_MB").getLong("value")//使用的磁盘空间
        val maxMem_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.maxMem_MB").getLong("value") //使用的最大内存
        val memUsed_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.memUsed_MB").getLong("value")//内存使用情况
        val remainingMem_MB = gauges.getJSONObject(applicationId + ".driver.BlockManager.memory.remainingMem_MB").getLong("value") //闲置内存
        //#####################stage###################################
        val activeJobs = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.job.activeJobs").getLong("value")//当前正在运行的job
        val allJobs = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.job.allJobs").getLong("value")//总job数
        val failedStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.failedStages").getLong("value")//失败的stage数量
        val runningStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.runningStages").getLong("value")//正在运行的stage
        val waitingStages = gauges.getJSONObject(applicationId + ".driver.DAGScheduler.stage.waitingStages").getLong("value")//等待运行的stage
        //#####################StreamingMetrics###################################
        val lastCompletedBatch_processingDelay = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingDelay").getLong("value")// 最近批次执行的延迟时间
        val lastCompletedBatch_processingEndTime = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingEndTime").getLong("value")//最近批次执行结束时间(毫秒为单位)
        val lastCompletedBatch_processingStartTime = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastCompletedBatch_processingStartTime").getLong("value")//最近批次开始执行时间
        //执行时间
        val lastCompletedBatch_processingTime = (lastCompletedBatch_processingEndTime - lastCompletedBatch_processingStartTime)
        val lastReceivedBatch_records = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.lastReceivedBatch_records").getLong("value")//最近批次接收的数量
        val runningBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.runningBatches").getLong("value")//正在运行的批次
        val totalCompletedBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalCompletedBatches").getLong("value")//完成的数据量
        val totalProcessedRecords = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalProcessedRecords").getLong("value")//总处理条数
        val totalReceivedRecords = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.totalReceivedRecords").getLong("value")//总接收条数
        val unprocessedBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.unprocessedBatches").getLong("value")//为处理的批次
        val waitingBatches = gauges.getJSONObject(applicationId + ".driver.query.StreamingMetrics.streaming.waitingBatches").getLong("value")//处于等待状态的批次
    2.spark提交至yarn
       val sparkDriverHost = sc.getConf.get("spark.org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter.param.PROXY_URI_BASES")
        //监控信息页面路径为集群路径+/proxy/+应用id+/metrics/json
      val url = s"${sparkDriverHost}/metrics/json"
    

     3.作用

    1.该job(endTime, applicationUniqueName, applicationId, sourceCount, costTime, countPerMillis)可以做表格,做链路统计

    2.磁盘与内存信息做饼图,用来对内存和磁盘的监控

    3.程序task的运行情况做表格,用来对job的监控 

  • 相关阅读:
    整数子数组求最大和
    四则运算实现
    四则运算
    2015年大二下学期读书计划
    java变量和数据类型
    jdk的安装和java的入门概念
    数据库的设计
    多表查询
    数据约束和外键
    表数据的简单查询语句
  • 原文地址:https://www.cnblogs.com/hejunhong/p/12318921.html
Copyright © 2020-2023  润新知