• MobileNet V2深入理解


    转载:https://zhuanlan.zhihu.com/p/33075914 MobileNet V2 论文初读

    转载:https://blog.csdn.net/wfei101/article/details/79334659  网络模型压缩和优化:MobileNet V2网络结构理解

    转载: https://zhuanlan.zhihu.com/p/50045821 mobilenetv1和mobilenetv2的区别

    MobileNetV2: Inverted Residuals and Linear Bottlenecks:连接:https://128.84.21.199/pdf/1801.04381.pdf

    MobileNet v1中使用的Depthwise Separable Convolution是模型压缩的一个最为经典的策略,它是通过将跨通道的 [公式] 卷积换成单通道的 [公式] 卷积+跨通道的 [公式] 卷积来达到此目的的。

    MobileNet V2主要的改进有两点

    1、Linear Bottlenecks。因为ReLU的在通道数较少的Feature Map上有非常严重信息损失问题,所以去掉了小维度输出层后面的非线性激活层ReLU,保留更多的特征信息,目的是为了保证模型的表达能力。

    2、Inverted Residual block。该结构和传统residual block中维度先缩减再扩增正好相反,因此shotcut也就变成了连接的是维度缩减后的feature map。


    相同点

    • 都采用 Depth-wise (DW) 卷积搭配 Point-wise (PW) 卷积的方式来提特征。这两个操作合起来也被称为 Depth-wise Separable Convolution,之前在 Xception 中被广泛使用。这么做的好处是理论上可以成倍的减少卷积层的时间复杂度和空间复杂度。由下式可知,因为卷积核的尺寸 [公式] 通常远小于输出通道数 [公式],因此标准卷积的计算复杂度近似为 DW + PW 组合卷积的 [公式] 倍。由于Depthwise卷积的每个通道Feature Map产生且仅产生一个与之对应的Feature Map,也就是说输出层的Feature Map的channel数量等于输入层的Feature map的数量。因此DepthwiseConv不需要控制输出层的Feature Map的数量,因此并没有num_filters 这个参数,这个参数是和输入特征的channels数相等。

             standard Convolution运算量:3*3跨通道运算 C*(C*(K**2)*x),其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;

             Depth-wise Separable Convolution运算量:单通道运算(C*(K**2)*x)+ 跨通道1*1卷积 C*(C*(1**2)*x),,其中x为一个kernel核在一个一维的输入特征上运算需要滑动的次数,这里假设卷积核个数和输入通道数都是C;

            [公式]

                       Depthwise卷积示意图(3个通道)

           

           

            主要创新点

            1,Inverted residuals:V2 在 DW 卷积之前新加了一个 1*1 大小PW 卷积。这么做的原因,是因为 DW 卷积由于本身的计算特性决定它自己没有改变通道数的能力,上一层给它多少通道,它就只能输出多少通道。所以如果上一层给的通道数本身很少的话,DW 也只能很委屈的在低维空间提特征,因此效果不够好。现在 V2 为了改善这个问题,给每个 DW 之前都配备了一个 PW,专门用来升维,定义升维系数 t(而在v2中这个值一般是介于 [公式] 之间的数,在作者的实验中, [公式]),这样不管输入通道数 [公式] 是多是少,经过第一个 PW 升维之后,DW 都是在相对的更高维 ( [公式] ) 进行着辛勤工作的。主要也是为了提取更多的通道信息,得到更多的特征线信息。

           2,Linear bottlenecks:V2 去掉了第二个 PW 的激活函数,意思就是bottleneck的输出不接非线性激活层。论文作者称其为 Linear Bottleneck。这么做的原因,是因为作者认为激活函数在高维空间能够有效的增加非线性,而在低维空间时则会破坏特征,不如线性的效果好。由于第二个 PW 的主要功能就是降维,因此按照上面的理论,降维之后就不宜再使用 ReLU6 了。

     再看看MobileNetV2的block 与ResNet 的block:主要不同之处就在于,ResNet是:压缩”→“卷积提特征”→“扩张”,MobileNetV2则是Inverted residuals, 即:“扩张”→“卷积提特征”→ “压缩

    具体mobilenetV2的宏观结构如下:t表示每个bottleneck的PW层的expand系数,也就是channels扩张系数,

                                                          c表示每个bottleneck的输出通道数,也就是每个bottleneck输出的PW的channels数,用于降维,

                                                          n表示有多少个bottleneck连接在一起,s表示第一个bottleneck的DW层的stride,表示下采样;

                                              

    附上mobilenetv2的源码,可以通过netscope: https://ethereon.github.io/netscope/#/editor查看:

    name: "MOBILENET_V2"
    layer {
        name: "data"
        type: "ImageData"
        top: "data"
        top: "label"
        include {
            phase: TRAIN
        }
        transform_param {
            mirror: true
            crop_size: 224
        }
        image_data_param {
            source: "./train.txt"
            batch_size: 24
            shuffle: false
        }
    }
    layer {
        name: "data"
        type: "ImageData"
        top: "data"
        top: "label"
        include {
            phase: TEST
        }
        transform_param {
            mirror: false
            crop_size: 224
        }
        image_data_param {
            source: "./valid.txt"
            batch_size: 16
        }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        pad: 1
        kernel_size: 3
        stride: 2
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv1/bn"
      type: "BatchNorm"
      bottom: "conv1"
      top: "conv1/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv1/scale"
      type: "Scale"
      bottom: "conv1/bn"
      top: "conv1/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "conv1/bn"
      top: "conv1/bn"
    }
    layer {
      name: "conv2_1/expand"
      type: "Convolution"
      bottom: "conv1/bn"
      top: "conv2_1/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv2_1/expand/bn"
      type: "BatchNorm"
      bottom: "conv2_1/expand"
      top: "conv2_1/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_1/expand/scale"
      type: "Scale"
      bottom: "conv2_1/expand/bn"
      top: "conv2_1/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu2_1/expand"
      type: "ReLU"
      bottom: "conv2_1/expand/bn"
      top: "conv2_1/expand/bn"
    }
    layer {
      name: "conv2_1/dwise"
      type: "Convolution"
      bottom: "conv2_1/expand/bn"
      top: "conv2_1/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 32
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv2_1/dwise/bn"
      type: "BatchNorm"
      bottom: "conv2_1/dwise"
      top: "conv2_1/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_1/dwise/scale"
      type: "Scale"
      bottom: "conv2_1/dwise/bn"
      top: "conv2_1/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu2_1/dwise"
      type: "ReLU"
      bottom: "conv2_1/dwise/bn"
      top: "conv2_1/dwise/bn"
    }
    layer {
      name: "conv2_1/linear"
      type: "Convolution"
      bottom: "conv2_1/dwise/bn"
      top: "conv2_1/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 16
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv2_1/linear/bn"
      type: "BatchNorm"
      bottom: "conv2_1/linear"
      top: "conv2_1/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_1/linear/scale"
      type: "Scale"
      bottom: "conv2_1/linear/bn"
      top: "conv2_1/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv2_2/expand"
      type: "Convolution"
      bottom: "conv2_1/linear/bn"
      top: "conv2_2/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 96
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv2_2/expand/bn"
      type: "BatchNorm"
      bottom: "conv2_2/expand"
      top: "conv2_2/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_2/expand/scale"
      type: "Scale"
      bottom: "conv2_2/expand/bn"
      top: "conv2_2/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu2_2/expand"
      type: "ReLU"
      bottom: "conv2_2/expand/bn"
      top: "conv2_2/expand/bn"
    }
    layer {
      name: "conv2_2/dwise"
      type: "Convolution"
      bottom: "conv2_2/expand/bn"
      top: "conv2_2/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 96
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 96
        stride: 2
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv2_2/dwise/bn"
      type: "BatchNorm"
      bottom: "conv2_2/dwise"
      top: "conv2_2/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_2/dwise/scale"
      type: "Scale"
      bottom: "conv2_2/dwise/bn"
      top: "conv2_2/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu2_2/dwise"
      type: "ReLU"
      bottom: "conv2_2/dwise/bn"
      top: "conv2_2/dwise/bn"
    }
    layer {
      name: "conv2_2/linear"
      type: "Convolution"
      bottom: "conv2_2/dwise/bn"
      top: "conv2_2/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 24
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv2_2/linear/bn"
      type: "BatchNorm"
      bottom: "conv2_2/linear"
      top: "conv2_2/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv2_2/linear/scale"
      type: "Scale"
      bottom: "conv2_2/linear/bn"
      top: "conv2_2/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv3_1/expand"
      type: "Convolution"
      bottom: "conv2_2/linear/bn"
      top: "conv3_1/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 144
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv3_1/expand/bn"
      type: "BatchNorm"
      bottom: "conv3_1/expand"
      top: "conv3_1/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_1/expand/scale"
      type: "Scale"
      bottom: "conv3_1/expand/bn"
      top: "conv3_1/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu3_1/expand"
      type: "ReLU"
      bottom: "conv3_1/expand/bn"
      top: "conv3_1/expand/bn"
    }
    layer {
      name: "conv3_1/dwise"
      type: "Convolution"
      bottom: "conv3_1/expand/bn"
      top: "conv3_1/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 144
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 144
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv3_1/dwise/bn"
      type: "BatchNorm"
      bottom: "conv3_1/dwise"
      top: "conv3_1/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_1/dwise/scale"
      type: "Scale"
      bottom: "conv3_1/dwise/bn"
      top: "conv3_1/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu3_1/dwise"
      type: "ReLU"
      bottom: "conv3_1/dwise/bn"
      top: "conv3_1/dwise/bn"
    }
    layer {
      name: "conv3_1/linear"
      type: "Convolution"
      bottom: "conv3_1/dwise/bn"
      top: "conv3_1/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 24
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv3_1/linear/bn"
      type: "BatchNorm"
      bottom: "conv3_1/linear"
      top: "conv3_1/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_1/linear/scale"
      type: "Scale"
      bottom: "conv3_1/linear/bn"
      top: "conv3_1/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_3_1"
      type: "Eltwise"
      bottom: "conv2_2/linear/bn"
      bottom: "conv3_1/linear/bn"
      top: "block_3_1"
    }
    layer {
      name: "conv3_2/expand"
      type: "Convolution"
      bottom: "block_3_1"
      top: "conv3_2/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 144
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv3_2/expand/bn"
      type: "BatchNorm"
      bottom: "conv3_2/expand"
      top: "conv3_2/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_2/expand/scale"
      type: "Scale"
      bottom: "conv3_2/expand/bn"
      top: "conv3_2/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu3_2/expand"
      type: "ReLU"
      bottom: "conv3_2/expand/bn"
      top: "conv3_2/expand/bn"
    }
    layer {
      name: "conv3_2/dwise"
      type: "Convolution"
      bottom: "conv3_2/expand/bn"
      top: "conv3_2/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 144
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 144
        stride: 2
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv3_2/dwise/bn"
      type: "BatchNorm"
      bottom: "conv3_2/dwise"
      top: "conv3_2/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_2/dwise/scale"
      type: "Scale"
      bottom: "conv3_2/dwise/bn"
      top: "conv3_2/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu3_2/dwise"
      type: "ReLU"
      bottom: "conv3_2/dwise/bn"
      top: "conv3_2/dwise/bn"
    }
    layer {
      name: "conv3_2/linear"
      type: "Convolution"
      bottom: "conv3_2/dwise/bn"
      top: "conv3_2/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv3_2/linear/bn"
      type: "BatchNorm"
      bottom: "conv3_2/linear"
      top: "conv3_2/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv3_2/linear/scale"
      type: "Scale"
      bottom: "conv3_2/linear/bn"
      top: "conv3_2/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv4_1/expand"
      type: "Convolution"
      bottom: "conv3_2/linear/bn"
      top: "conv4_1/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_1/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_1/expand"
      top: "conv4_1/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_1/expand/scale"
      type: "Scale"
      bottom: "conv4_1/expand/bn"
      top: "conv4_1/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_1/expand"
      type: "ReLU"
      bottom: "conv4_1/expand/bn"
      top: "conv4_1/expand/bn"
    }
    layer {
      name: "conv4_1/dwise"
      type: "Convolution"
      bottom: "conv4_1/expand/bn"
      top: "conv4_1/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 192
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_1/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_1/dwise"
      top: "conv4_1/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_1/dwise/scale"
      type: "Scale"
      bottom: "conv4_1/dwise/bn"
      top: "conv4_1/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_1/dwise"
      type: "ReLU"
      bottom: "conv4_1/dwise/bn"
      top: "conv4_1/dwise/bn"
    }
    layer {
      name: "conv4_1/linear"
      type: "Convolution"
      bottom: "conv4_1/dwise/bn"
      top: "conv4_1/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_1/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_1/linear"
      top: "conv4_1/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_1/linear/scale"
      type: "Scale"
      bottom: "conv4_1/linear/bn"
      top: "conv4_1/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_4_1"
      type: "Eltwise"
      bottom: "conv3_2/linear/bn"
      bottom: "conv4_1/linear/bn"
      top: "block_4_1"
    }
    layer {
      name: "conv4_2/expand"
      type: "Convolution"
      bottom: "block_4_1"
      top: "conv4_2/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_2/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_2/expand"
      top: "conv4_2/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_2/expand/scale"
      type: "Scale"
      bottom: "conv4_2/expand/bn"
      top: "conv4_2/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_2/expand"
      type: "ReLU"
      bottom: "conv4_2/expand/bn"
      top: "conv4_2/expand/bn"
    }
    layer {
      name: "conv4_2/dwise"
      type: "Convolution"
      bottom: "conv4_2/expand/bn"
      top: "conv4_2/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 192
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_2/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_2/dwise"
      top: "conv4_2/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_2/dwise/scale"
      type: "Scale"
      bottom: "conv4_2/dwise/bn"
      top: "conv4_2/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_2/dwise"
      type: "ReLU"
      bottom: "conv4_2/dwise/bn"
      top: "conv4_2/dwise/bn"
    }
    layer {
      name: "conv4_2/linear"
      type: "Convolution"
      bottom: "conv4_2/dwise/bn"
      top: "conv4_2/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 32
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_2/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_2/linear"
      top: "conv4_2/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_2/linear/scale"
      type: "Scale"
      bottom: "conv4_2/linear/bn"
      top: "conv4_2/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_4_2"
      type: "Eltwise"
      bottom: "block_4_1"
      bottom: "conv4_2/linear/bn"
      top: "block_4_2"
    }
    layer {
      name: "conv4_3/expand"
      type: "Convolution"
      bottom: "block_4_2"
      top: "conv4_3/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_3/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_3/expand"
      top: "conv4_3/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_3/expand/scale"
      type: "Scale"
      bottom: "conv4_3/expand/bn"
      top: "conv4_3/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_3/expand"
      type: "ReLU"
      bottom: "conv4_3/expand/bn"
      top: "conv4_3/expand/bn"
    }
    layer {
      name: "conv4_3/dwise"
      type: "Convolution"
      bottom: "conv4_3/expand/bn"
      top: "conv4_3/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 192
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 192
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_3/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_3/dwise"
      top: "conv4_3/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_3/dwise/scale"
      type: "Scale"
      bottom: "conv4_3/dwise/bn"
      top: "conv4_3/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_3/dwise"
      type: "ReLU"
      bottom: "conv4_3/dwise/bn"
      top: "conv4_3/dwise/bn"
    }
    layer {
      name: "conv4_3/linear"
      type: "Convolution"
      bottom: "conv4_3/dwise/bn"
      top: "conv4_3/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 64
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_3/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_3/linear"
      top: "conv4_3/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_3/linear/scale"
      type: "Scale"
      bottom: "conv4_3/linear/bn"
      top: "conv4_3/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv4_4/expand"
      type: "Convolution"
      bottom: "conv4_3/linear/bn"
      top: "conv4_4/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_4/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_4/expand"
      top: "conv4_4/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_4/expand/scale"
      type: "Scale"
      bottom: "conv4_4/expand/bn"
      top: "conv4_4/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_4/expand"
      type: "ReLU"
      bottom: "conv4_4/expand/bn"
      top: "conv4_4/expand/bn"
    }
    layer {
      name: "conv4_4/dwise"
      type: "Convolution"
      bottom: "conv4_4/expand/bn"
      top: "conv4_4/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 384
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_4/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_4/dwise"
      top: "conv4_4/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_4/dwise/scale"
      type: "Scale"
      bottom: "conv4_4/dwise/bn"
      top: "conv4_4/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_4/dwise"
      type: "ReLU"
      bottom: "conv4_4/dwise/bn"
      top: "conv4_4/dwise/bn"
    }
    layer {
      name: "conv4_4/linear"
      type: "Convolution"
      bottom: "conv4_4/dwise/bn"
      top: "conv4_4/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 64
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_4/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_4/linear"
      top: "conv4_4/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_4/linear/scale"
      type: "Scale"
      bottom: "conv4_4/linear/bn"
      top: "conv4_4/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_4_4"
      type: "Eltwise"
      bottom: "conv4_3/linear/bn"
      bottom: "conv4_4/linear/bn"
      top: "block_4_4"
    }
    layer {
      name: "conv4_5/expand"
      type: "Convolution"
      bottom: "block_4_4"
      top: "conv4_5/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_5/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_5/expand"
      top: "conv4_5/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_5/expand/scale"
      type: "Scale"
      bottom: "conv4_5/expand/bn"
      top: "conv4_5/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_5/expand"
      type: "ReLU"
      bottom: "conv4_5/expand/bn"
      top: "conv4_5/expand/bn"
    }
    layer {
      name: "conv4_5/dwise"
      type: "Convolution"
      bottom: "conv4_5/expand/bn"
      top: "conv4_5/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 384
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_5/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_5/dwise"
      top: "conv4_5/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_5/dwise/scale"
      type: "Scale"
      bottom: "conv4_5/dwise/bn"
      top: "conv4_5/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_5/dwise"
      type: "ReLU"
      bottom: "conv4_5/dwise/bn"
      top: "conv4_5/dwise/bn"
    }
    layer {
      name: "conv4_5/linear"
      type: "Convolution"
      bottom: "conv4_5/dwise/bn"
      top: "conv4_5/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 64
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_5/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_5/linear"
      top: "conv4_5/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_5/linear/scale"
      type: "Scale"
      bottom: "conv4_5/linear/bn"
      top: "conv4_5/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_4_5"
      type: "Eltwise"
      bottom: "block_4_4"
      bottom: "conv4_5/linear/bn"
      top: "block_4_5"
    }
    layer {
      name: "conv4_6/expand"
      type: "Convolution"
      bottom: "block_4_5"
      top: "conv4_6/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_6/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_6/expand"
      top: "conv4_6/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_6/expand/scale"
      type: "Scale"
      bottom: "conv4_6/expand/bn"
      top: "conv4_6/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_6/expand"
      type: "ReLU"
      bottom: "conv4_6/expand/bn"
      top: "conv4_6/expand/bn"
    }
    layer {
      name: "conv4_6/dwise"
      type: "Convolution"
      bottom: "conv4_6/expand/bn"
      top: "conv4_6/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 384
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_6/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_6/dwise"
      top: "conv4_6/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_6/dwise/scale"
      type: "Scale"
      bottom: "conv4_6/dwise/bn"
      top: "conv4_6/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_6/dwise"
      type: "ReLU"
      bottom: "conv4_6/dwise/bn"
      top: "conv4_6/dwise/bn"
    }
    layer {
      name: "conv4_6/linear"
      type: "Convolution"
      bottom: "conv4_6/dwise/bn"
      top: "conv4_6/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 64
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_6/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_6/linear"
      top: "conv4_6/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_6/linear/scale"
      type: "Scale"
      bottom: "conv4_6/linear/bn"
      top: "conv4_6/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_4_6"
      type: "Eltwise"
      bottom: "block_4_5"
      bottom: "conv4_6/linear/bn"
      top: "block_4_6"
    }
    layer {
      name: "conv4_7/expand"
      type: "Convolution"
      bottom: "block_4_6"
      top: "conv4_7/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_7/expand/bn"
      type: "BatchNorm"
      bottom: "conv4_7/expand"
      top: "conv4_7/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_7/expand/scale"
      type: "Scale"
      bottom: "conv4_7/expand/bn"
      top: "conv4_7/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu4_7/expand"
      type: "ReLU"
      bottom: "conv4_7/expand/bn"
      top: "conv4_7/expand/bn"
    }
    layer {
      name: "conv4_7/dwise"
      type: "Convolution"
      bottom: "conv4_7/expand/bn"
      top: "conv4_7/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 384
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 384
        stride: 2
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv4_7/dwise/bn"
      type: "BatchNorm"
      bottom: "conv4_7/dwise"
      top: "conv4_7/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_7/dwise/scale"
      type: "Scale"
      bottom: "conv4_7/dwise/bn"
      top: "conv4_7/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu4_7/dwise"
      type: "ReLU"
      bottom: "conv4_7/dwise/bn"
      top: "conv4_7/dwise/bn"
    }
    layer {
      name: "conv4_7/linear"
      type: "Convolution"
      bottom: "conv4_7/dwise/bn"
      top: "conv4_7/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 96
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv4_7/linear/bn"
      type: "BatchNorm"
      bottom: "conv4_7/linear"
      top: "conv4_7/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv4_7/linear/scale"
      type: "Scale"
      bottom: "conv4_7/linear/bn"
      top: "conv4_7/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv5_1/expand"
      type: "Convolution"
      bottom: "conv4_7/linear/bn"
      top: "conv5_1/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_1/expand/bn"
      type: "BatchNorm"
      bottom: "conv5_1/expand"
      top: "conv5_1/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_1/expand/scale"
      type: "Scale"
      bottom: "conv5_1/expand/bn"
      top: "conv5_1/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu5_1/expand"
      type: "ReLU"
      bottom: "conv5_1/expand/bn"
      top: "conv5_1/expand/bn"
    }
    layer {
      name: "conv5_1/dwise"
      type: "Convolution"
      bottom: "conv5_1/expand/bn"
      top: "conv5_1/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 576
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv5_1/dwise/bn"
      type: "BatchNorm"
      bottom: "conv5_1/dwise"
      top: "conv5_1/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_1/dwise/scale"
      type: "Scale"
      bottom: "conv5_1/dwise/bn"
      top: "conv5_1/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu5_1/dwise"
      type: "ReLU"
      bottom: "conv5_1/dwise/bn"
      top: "conv5_1/dwise/bn"
    }
    layer {
      name: "conv5_1/linear"
      type: "Convolution"
      bottom: "conv5_1/dwise/bn"
      top: "conv5_1/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 96
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_1/linear/bn"
      type: "BatchNorm"
      bottom: "conv5_1/linear"
      top: "conv5_1/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_1/linear/scale"
      type: "Scale"
      bottom: "conv5_1/linear/bn"
      top: "conv5_1/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_5_1"
      type: "Eltwise"
      bottom: "conv4_7/linear/bn"
      bottom: "conv5_1/linear/bn"
      top: "block_5_1"
    }
    layer {
      name: "conv5_2/expand"
      type: "Convolution"
      bottom: "block_5_1"
      top: "conv5_2/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_2/expand/bn"
      type: "BatchNorm"
      bottom: "conv5_2/expand"
      top: "conv5_2/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_2/expand/scale"
      type: "Scale"
      bottom: "conv5_2/expand/bn"
      top: "conv5_2/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu5_2/expand"
      type: "ReLU"
      bottom: "conv5_2/expand/bn"
      top: "conv5_2/expand/bn"
    }
    layer {
      name: "conv5_2/dwise"
      type: "Convolution"
      bottom: "conv5_2/expand/bn"
      top: "conv5_2/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 576
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv5_2/dwise/bn"
      type: "BatchNorm"
      bottom: "conv5_2/dwise"
      top: "conv5_2/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_2/dwise/scale"
      type: "Scale"
      bottom: "conv5_2/dwise/bn"
      top: "conv5_2/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu5_2/dwise"
      type: "ReLU"
      bottom: "conv5_2/dwise/bn"
      top: "conv5_2/dwise/bn"
    }
    layer {
      name: "conv5_2/linear"
      type: "Convolution"
      bottom: "conv5_2/dwise/bn"
      top: "conv5_2/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 96
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_2/linear/bn"
      type: "BatchNorm"
      bottom: "conv5_2/linear"
      top: "conv5_2/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_2/linear/scale"
      type: "Scale"
      bottom: "conv5_2/linear/bn"
      top: "conv5_2/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_5_2"
      type: "Eltwise"
      bottom: "block_5_1"
      bottom: "conv5_2/linear/bn"
      top: "block_5_2"
    }
    layer {
      name: "conv5_3/expand"
      type: "Convolution"
      bottom: "block_5_2"
      top: "conv5_3/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_3/expand/bn"
      type: "BatchNorm"
      bottom: "conv5_3/expand"
      top: "conv5_3/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_3/expand/scale"
      type: "Scale"
      bottom: "conv5_3/expand/bn"
      top: "conv5_3/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu5_3/expand"
      type: "ReLU"
      bottom: "conv5_3/expand/bn"
      top: "conv5_3/expand/bn"
    }
    layer {
      name: "conv5_3/dwise"
      type: "Convolution"
      bottom: "conv5_3/expand/bn"
      top: "conv5_3/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 576
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 576
        stride: 2
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv5_3/dwise/bn"
      type: "BatchNorm"
      bottom: "conv5_3/dwise"
      top: "conv5_3/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_3/dwise/scale"
      type: "Scale"
      bottom: "conv5_3/dwise/bn"
      top: "conv5_3/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu5_3/dwise"
      type: "ReLU"
      bottom: "conv5_3/dwise/bn"
      top: "conv5_3/dwise/bn"
    }
    layer {
      name: "conv5_3/linear"
      type: "Convolution"
      bottom: "conv5_3/dwise/bn"
      top: "conv5_3/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 160
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv5_3/linear/bn"
      type: "BatchNorm"
      bottom: "conv5_3/linear"
      top: "conv5_3/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv5_3/linear/scale"
      type: "Scale"
      bottom: "conv5_3/linear/bn"
      top: "conv5_3/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv6_1/expand"
      type: "Convolution"
      bottom: "conv5_3/linear/bn"
      top: "conv6_1/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_1/expand/bn"
      type: "BatchNorm"
      bottom: "conv6_1/expand"
      top: "conv6_1/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_1/expand/scale"
      type: "Scale"
      bottom: "conv6_1/expand/bn"
      top: "conv6_1/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu6_1/expand"
      type: "ReLU"
      bottom: "conv6_1/expand/bn"
      top: "conv6_1/expand/bn"
    }
    layer {
      name: "conv6_1/dwise"
      type: "Convolution"
      bottom: "conv6_1/expand/bn"
      top: "conv6_1/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 960
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv6_1/dwise/bn"
      type: "BatchNorm"
      bottom: "conv6_1/dwise"
      top: "conv6_1/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_1/dwise/scale"
      type: "Scale"
      bottom: "conv6_1/dwise/bn"
      top: "conv6_1/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu6_1/dwise"
      type: "ReLU"
      bottom: "conv6_1/dwise/bn"
      top: "conv6_1/dwise/bn"
    }
    layer {
      name: "conv6_1/linear"
      type: "Convolution"
      bottom: "conv6_1/dwise/bn"
      top: "conv6_1/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 160
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_1/linear/bn"
      type: "BatchNorm"
      bottom: "conv6_1/linear"
      top: "conv6_1/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_1/linear/scale"
      type: "Scale"
      bottom: "conv6_1/linear/bn"
      top: "conv6_1/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_6_1"
      type: "Eltwise"
      bottom: "conv5_3/linear/bn"
      bottom: "conv6_1/linear/bn"
      top: "block_6_1"
    }
    layer {
      name: "conv6_2/expand"
      type: "Convolution"
      bottom: "block_6_1"
      top: "conv6_2/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_2/expand/bn"
      type: "BatchNorm"
      bottom: "conv6_2/expand"
      top: "conv6_2/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_2/expand/scale"
      type: "Scale"
      bottom: "conv6_2/expand/bn"
      top: "conv6_2/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu6_2/expand"
      type: "ReLU"
      bottom: "conv6_2/expand/bn"
      top: "conv6_2/expand/bn"
    }
    layer {
      name: "conv6_2/dwise"
      type: "Convolution"
      bottom: "conv6_2/expand/bn"
      top: "conv6_2/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 960
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv6_2/dwise/bn"
      type: "BatchNorm"
      bottom: "conv6_2/dwise"
      top: "conv6_2/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_2/dwise/scale"
      type: "Scale"
      bottom: "conv6_2/dwise/bn"
      top: "conv6_2/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu6_2/dwise"
      type: "ReLU"
      bottom: "conv6_2/dwise/bn"
      top: "conv6_2/dwise/bn"
    }
    layer {
      name: "conv6_2/linear"
      type: "Convolution"
      bottom: "conv6_2/dwise/bn"
      top: "conv6_2/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 160
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_2/linear/bn"
      type: "BatchNorm"
      bottom: "conv6_2/linear"
      top: "conv6_2/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_2/linear/scale"
      type: "Scale"
      bottom: "conv6_2/linear/bn"
      top: "conv6_2/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "block_6_2"
      type: "Eltwise"
      bottom: "block_6_1"
      bottom: "conv6_2/linear/bn"
      top: "block_6_2"
    }
    layer {
      name: "conv6_3/expand"
      type: "Convolution"
      bottom: "block_6_2"
      top: "conv6_3/expand"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_3/expand/bn"
      type: "BatchNorm"
      bottom: "conv6_3/expand"
      top: "conv6_3/expand/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_3/expand/scale"
      type: "Scale"
      bottom: "conv6_3/expand/bn"
      top: "conv6_3/expand/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu6_3/expand"
      type: "ReLU"
      bottom: "conv6_3/expand/bn"
      top: "conv6_3/expand/bn"
    }
    layer {
      name: "conv6_3/dwise"
      type: "Convolution"
      bottom: "conv6_3/expand/bn"
      top: "conv6_3/dwise"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 960
        bias_term: false
        pad: 1
        kernel_size: 3
        group: 960
        weight_filler {
          type: "msra"
        }
        engine: CAFFE
      }
    }
    layer {
      name: "conv6_3/dwise/bn"
      type: "BatchNorm"
      bottom: "conv6_3/dwise"
      top: "conv6_3/dwise/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_3/dwise/scale"
      type: "Scale"
      bottom: "conv6_3/dwise/bn"
      top: "conv6_3/dwise/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "relu6_3/dwise"
      type: "ReLU"
      bottom: "conv6_3/dwise/bn"
      top: "conv6_3/dwise/bn"
    }
    layer {
      name: "conv6_3/linear"
      type: "Convolution"
      bottom: "conv6_3/dwise/bn"
      top: "conv6_3/linear"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 320
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_3/linear/bn"
      type: "BatchNorm"
      bottom: "conv6_3/linear"
      top: "conv6_3/linear/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_3/linear/scale"
      type: "Scale"
      bottom: "conv6_3/linear/bn"
      top: "conv6_3/linear/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.000000001
      }
    }
    layer {
      name: "conv6_4"
      type: "Convolution"
      bottom: "conv6_3/linear/bn"
      top: "conv6_4"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      convolution_param {
        num_output: 1280
        bias_term: false
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
      }
    }
    layer {
      name: "conv6_4/bn"
      type: "BatchNorm"
      bottom: "conv6_4"
      top: "conv6_4/bn"
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 0.0
        decay_mult: 0.0
      }
    }
    layer {
      name: "conv6_4/scale"
      type: "Scale"
      bottom: "conv6_4/bn"
      top: "conv6_4/bn"
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      param {
        lr_mult: 1.0
        decay_mult: 0.0
      }
      scale_param {
        filler {
          value: 0.5
        }
        bias_term: true
        bias_filler {
          value: 0
        }
        l1_lambda: 0.001
      }
    }
    layer {
      name: "relu6_4"
      type: "ReLU"
      bottom: "conv6_4/bn"
      top: "conv6_4/bn"
    }
    layer {
      name: "pool6"
      type: "Pooling"
      bottom: "conv6_4/bn"
      top: "pool6"
      pooling_param {
        pool: AVE
        global_pooling: true
      }
    }
    layer {
      name: "food_fc7"
      type: "Convolution"
      bottom: "pool6"
      top: "fc7"
      param {
        lr_mult: 1.0
        decay_mult: 1.0
      }
      param {
        lr_mult: 2.0
        decay_mult: 0.0
      }
      convolution_param {
        #num_output: 143
        num_output: 43
        kernel_size: 1
        weight_filler {
          type: "msra"
        }
        bias_filler {
          type: "constant"
          value: 0.0
        }
      }
    }
    layer {
      name: "loss"
      type: "SoftmaxWithLoss"
      bottom: "fc7"
      bottom: "label"
      top: "loss"
    }
    layer {
      name: "top1/acc"
      type: "Accuracy"
      bottom: "fc7"
      bottom: "label"
      top: "top1/acc"
      include {
        phase: TEST
      }
    }
    layer {
      name: "top5/acc"
      type: "Accuracy"
      bottom: "fc7"
      bottom: "label"
      top: "top5/acc"
      include {
        phase: TEST
      }
      accuracy_param {
        top_k: 5
      }
    }

     

  • 相关阅读:
    poj2631 Roads in the North(求树的直径)
    P3809 【模板】后缀排序
    P3376 【模板】网络最大流dinic算法
    3224: Tyvj 1728 普通平衡树
    034 Android IntentService 的使用
    033 Android 绑定Service并与之通信
    032 Android Service
    031 Android 异步任务(AsyncTask)
    030 Android 线程+Handler的使用
    029 Android WebView的使用(用来显示网页)
  • 原文地址:https://www.cnblogs.com/hansjorn/p/11322856.html
Copyright © 2020-2023  润新知