• Python基础(生成器)


    二、生成器(可以看做是一种数据类型)

      描述:   

        通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

        要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

      列表解析(列表生成式):

     1 #生成一个列表[0,1,2,3,4,5,6,7,8,9]
     2 #方式一:正常思维 for循环方法生成
     3 li=[]
     4 for i in range(10):
     5     li.append(i)
     6 print(li)
     7 
     8 #方式二:列表解析
     9 li2=[i for i in range(10)]
    10 print(li2)
    11 
    12 li3=[i for i in range(10) if i>5]
    13 print(li3)

     生成器的两种生成方式:

     1 #创建生成器----列表解析方式
     2 gen=(i for i in range(10))
     3 #如果想获取迭代器中的元素可以通过next()或__next__()获取
     4 print(next(gen))
     5 print(next(gen))
     6 print(gen.__next__())
     7 print(gen.__next__())
     8 print("-----------")
     9 #但是一般都不会使用next方法获取生成器中的元素,太恶心!!!
    10 #因为生成器也是可迭代对象,所以一般使用for循环获取生成器中的元素
    11 for i in gen:
    12     print(i)
    13 
    14 #创建生成器----函数方式
    15 def func():
    16     yield 0
    17     yield 1
    18     yield 2
    19     yield 3
    20 for i in func():
    21     print(i)

    具有yield关键字的函数都是生成器,yield可以理解为return,返回后面的值给调用者。不同的是return返回后,函数会释放,而生成器则不会。在直接调用next方法或用for语句进行下一次迭代时,生成器会从yield下一句开始执行,直至遇到下一个yield。

      迭代器,可迭代对象,生成器关系:

  • 相关阅读:
    2019.1.4函数的相关内容
    2019.1.3 序列常见的BIF
    2019.1.2字符串格式化的内容
    2018.12.29字符串的相关内容
    2018.12.28字符串的相关内容
    2018.12.27上午学习内容
    下午的学习内容
    今天上午学习的内容
    四、自动装配
    lombok
  • 原文地址:https://www.cnblogs.com/sun-10387834/p/10221348.html
Copyright © 2020-2023  润新知