import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction;
import java.util.Arrays;
import java.util.List;
/**
* union 算子:
* 取两个RDD的并集,不去重,会增加partition的数量,同时并行度也会增加
*
*/
public class UnionOperator {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("sampleTake");
JavaSparkContext sc = new JavaSparkContext(conf);
List<String> list1 = Arrays.asList("w1","w2","w3","w4","w5");
List<String> list2 = Arrays.asList("q1","q2","q3","q4","q5");
JavaRDD<String> list1Rdd = sc.parallelize(list1,2);
JavaRDD<String> list2Rdd = sc.parallelize(list2);
//此时result有3个分区
JavaRDD<String> result = list1Rdd.union(list2Rdd);
result.foreach(new VoidFunction<String>() {
@Override
public void call(String s) throws Exception {
System.err.println(s);
}
});
}
}
微信扫描下图二维码加入博主知识星球,获取更多大数据、人工智能、算法等免费学习资料哦!