题目链接:uva 11605 - Lights inside a 3d Grid
题目大意:给定一个三维坐标系大小,每一个位置有一个灯。初始状态为关。每次随机选中两个点,以这两点为对角线的长方体内全部灯转变状态。操作K次。问说平均情况下。最后会有多少栈灯亮着。
解题思路:枚举坐标系上的点。计算单个点亮着的概率,然后累加即使总体的期望。
对于一个点x,y,z,分别考虑每维坐标系,比如x。选中的概率为px=2∗(n−x+1)∗x−1n∗n,三维坐标均选中的概率p即为该点被选中的概率。
可是对于一点来说,由于操作K次,所以最后灯为亮的话。操作到灯的次数一定要为奇数才行,所以有∑C(iK)pi(1−p)K−i(i为奇数)
===》(1−p+p)K−(1−p−p)K2
===》1−(1−2p)K2
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
int N, M, P, K;
inline double getp (double n, double x) {
double s = n * n;
double t = 2 * (n - x + 1) * x - 1;
return t / s;
}
inline double handle (double p) {
return (1 - pow(1 - 2 * p, K)) / 2;
}
double solve () {
double ret = 0;
for (int x = 1; x <= N; x++) {
double px = getp(N, x);
for (int y = 1; y <= M; y++) {
double py = getp(M, y);
for (int z = 1; z <= P; z++) {
double pz = getp(P, z);
ret += handle(px * py * pz);
}
}
}
return ret;
}
int main () {
int cas;
scanf("%d", &cas);
for (int kcas = 1; kcas <= cas; kcas++) {
scanf("%d%d%d%d", &N, &M, &P, &K);
printf("Case %d: %.10lf
", kcas, solve());
}
return 0;
}