• 第三期 预测——2.输入和输出


     
     

    预测的输入和输出

    预测模块使用来自传感器融合的地图和数据来生成关于所有其他动态对象可能做的预测为了更清楚地说明,我们来看一个预测输入输出的例子(json格式)

    示例输入 - 传感器融合

    {
        "timestamp" : 34512.21,
        "vehicles" : [
            {
                "id"  : 0,
                "x"   : -10.0,
                "y"   : 8.1,
                "v_x" : 8.0,
                "v_y" : 0.0,
                "sigma_x" : 0.031,
                "sigma_y" : 0.040,
                "sigma_v_x" : 0.12,
                "sigma_v_y" : 0.03,
            },
            {
                "id"  : 1,
                "x"   : 10.0,
                "y"   : 12.1,
                "v_x" : -8.0,
                "v_y" : 0.0,
                "sigma_x" : 0.031,
                "sigma_y" : 0.040,
                "sigma_v_x" : 0.12,
                "sigma_v_y" : 0.03,
            },
        ]
    }
    

    示例输出

    {
        "timestamp" : 34512.21,
        "vehicles" : [
            {
                "id" : 0,
                "length": 3.4,
                "width" : 1.5,
                "predictions" : [
                    {
                        "probability" : 0.781,
                        "trajectory"  : [
                            {
                                "x": -10.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34512.71
                            },
                            {
                                "x": -6.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34513.21
                            },
                            {
                                "x": -2.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34513.71
                            },
                            {
                                "x": 2.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34514.21
                            },
                            {
                                "x": 6.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34514.71
                            },
                            {
                                "x": 10.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34515.21
                            },
                        ]
                    },
                    {
                        "probability" : 0.219,
                        "trajectory"  : [
                            {
                                "x": -10.0,
                                "y": 8.1,
                                "yaw": 0.0,
                                "timestamp": 34512.71
                            },
                            {
                                "x": -7.0,
                                "y": 7.5,
                                "yaw": -5.2,
                                "timestamp": 34513.21
                            },
                            {
                                "x": -4.0,
                                "y": 6.1,
                                "yaw": -32.0,
                                "timestamp": 34513.71
                            },
                            {
                                "x": -3.0,
                                "y": 4.1,
                                "yaw": -73.2,
                                "timestamp": 34514.21
                            },
                            {
                                "x": -2.0,
                                "y": 1.2,
                                "yaw": -90.0,
                                "timestamp": 34514.71
                            },
                            {
                                "x": -2.0,
                                "y":-2.8,
                                "yaw": -90.0,
                                "timestamp": 34515.21
                            },
                        ]
    
                    }
                ]
            },
            {
                "id" : 1,
                "length": 3.4,
                "width" : 1.5,
                "predictions" : [
                    {
                        "probability" : 1.0,
                        "trajectory" : [
                            {
                                "x": 10.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34512.71
                            },
                            {
                                "x": 6.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34513.21
                            },
                            {
                                "x": 2.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34513.71
                            },
                            {
                                "x": -2.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34514.21
                            },
                            {
                                "x": -6.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34514.71
                            },
                            {
                                "x": -10.0,
                                "y": 12.1,
                                "yaw": -180.0,
                                "timestamp": 34515.21
                            }
                        ]
                    }
                ]
            }
        ]
    }
    

    笔记

    1. 这里显示的预测轨迹仅延伸几秒钟。实际上,我们所做的预测可以延伸到10-20秒的范围。
    2. 显示的轨迹具有0.5秒的分辨率。实际上,我们会产生稍微更精细的预测。
    3. 这个例子只显示,vehicles但实际上我们也会为所有动态对象产生预测
     

    练习题

    左侧车辆有多少种可能的轨迹(id为0)?

    • 0

    • 1

    • 2

    • 3+

     
  • 相关阅读:
    hdu3709(数位dp)
    2012天津E题
    2012天津C题
    hdu1754(splay)
    赤裸裸的splay平衡树
    hdu(预处理+线段树)
    uva11922(强行用rope替代spaly)
    lightoj 1370 欧拉函数
    poj3294 出现次数大于n/2 的公共子串
    poj2774 后缀数组2个字符串的最长公共子串
  • 原文地址:https://www.cnblogs.com/fuhang/p/8990492.html
Copyright © 2020-2023  润新知