• P4005 小 Y 和地铁


    题目描述

    小 Y 是一个爱好旅行的 OIer。一天,她来到了一个新的城市。由于不熟悉那里的交通系统,她选择了坐地铁。

    她发现每条地铁线路可以看成平面上的一条曲线,不同线路的交点处一定会设有

    换乘站 。通过调查得知,没有线路是环线,也没有线路与自身相交。任意两条不同的线路只会在若干个点上相交,没有重合的部分,且没有三线共点的情况。即,如图所示的情况都是不存在的:

    小 Y 坐着地铁 0 号线,路上依次经过了 n 个换乘站。她记下了每个换乘站可以换乘的线路编号,发现每条线路与她所乘坐的线路最多只有 2 个换乘站。现在小 Y 想知道,除掉她经过的换乘站以外,这个城市里最少有几个换乘站。只有你告诉她正确的答案,她才会答应下次带你去玩呢。

    输入输出格式

    输入格式:

    从文件 metro.in 中读入数据。

    请.注.意.本.题.有.多.组.输.入.数.据。

    输入数据的第一行是一个整数 T,表示输入数据的组数。接下来依次给出每组数据。

    对于每组数据,第一行是一个整数 n,表示小 Y 经过的换乘站的数目。第二行为 n个用空格隔开的整数,依次表示每个换乘站的可以换乘的线路编号。这些编号都在 1 ~n 之内。

    输出格式:

    输出到文件 metro.out 中。

    对于每组输入数据,输出一行一个整数,表示除掉这 n 个换乘站之外,最少有几个换乘站。

    输入输出样例

    输入样例#1: 
    4 
    4 1 2 1 2 8 1 2 3 4 1 2 3 4 5 5 4 3 3 5 8 1 2 3 4 1 3 2 4
    输出样例#1: 
    0 
    0 
    0 
    1

    说明

    【样例 1 解释】

    对于样例的前两组数据,一种可能的最优答案如下图所示。

    【子任务】

    一共有 50 个测试点,每个测试点 2 分。你只有在答案完全正确时才能得到该测试点的全部分数,否则不得分。

    对于所有测试点,以及对于样例, 1 ≤ T ≤ 100; 1 ≤ n ≤ 44。对于每个测试点, n 的范围如下表:

     

    Solution:

      本题ZYYS,绝世搜索好题。

      题意有些晦涩,总结后不难发现实际路线只有$4$种情况:

         

                   

      至于洛谷题解中的开始8种情况的另外4种,贪心的想到,完全没有必要那样建,比如:

      

      由于要使各曲线的交点尽量少,那么上面两幅图肯定是没有这幅图优秀的:

      然后在最上面说的4种情形中,由于上部的曲线不可能和下部的曲线相交,所以可以将其上下分开看,而既有上部又有下部的图直接将其当作两个部分的曲线合并,比如:

    理解为上部的曲线$[l,n]$+下部的曲线$[r,n]$就好了。

      然后对于同上或同下的两个曲线$[l1,r1],[l2,r2]$,显然只有$l2leq r1leq r2$时才会有交点,那么计算一段曲线会产生多少交点,就得统计区间$[l,r]$之间的已有$r$个数,单点修改区间查询直接想到树状数组。

      这样就能直接暴力搜索,枚举每条曲线的形态,对于既有上部和下部的曲线,发现可以和另一条单部曲线合并成环,比如:从左到右枚举曲线状态,当前状态只受左边的影响,由于$l$左边的曲线状态已确定,而$r$是确定的,所以当前$[l,r]$的最优情况直接贪心选择两种方式的与左边交点的最小个数就好了,另一种情况同理就好了。

      时间复杂度$O(2^{frac{n}{2}}log n)$。

    代码:

    /*Code by 520 -- 9.2*/
    #include<bits/stdc++.h>
    #define il inline
    #define ll long long
    #define RE register
    #define For(i,a,b) for(RE int (i)=(a);(i)<=(b);(i)++)
    #define Bor(i,a,b) for(RE int (i)=(b);(i)>=(a);(i)--)
    using namespace std;
    const int N=100;
    int n,a[N],T,l[N],r[N],ans,num;
    struct node{
        int c[N];
        void clear(){memset(c,0,sizeof(c));}
        void add(int x,int k){while(x<=n)c[x]+=k,x+=x&-x;}
        int sum(int x){int ans=0;while(x)ans+=c[x],x-=x&-x;return ans;}
        int query(int l,int r){return sum(r)-sum(l-1);}
    }up,down;
    
    int gi(){
        int a=0;char x=getchar();
        while(x<'0'||x>'9')x=getchar();
        while(x>='0'&&x<='9')a=(a<<3)+(a<<1)+(x^48),x=getchar();
        return a;
    }
    
    void dfs(int x,int tot){
        if(x>num){ans=min(ans,tot);return;}
        if(tot>=ans)return;
        int upp=min(up.query(l[x],r[x]),down.query(l[x],n)+up.query(r[x],n));
        up.add(r[x],1),dfs(x+1,tot+upp),up.add(r[x],-1);
        int downn=min(down.query(l[x],r[x]),up.query(l[x],n)+down.query(r[x],n));
        down.add(r[x],1),dfs(x+1,tot+downn),down.add(r[x],-1);
    }
    
    il void solve(){
        for(T=gi();T;--T){
            scanf("%d",&n),ans=0x7fffffff,num=0;
            For(i,1,n) a[i]=gi();
            For(i,1,n) For(j,i+1,n) if(a[i]==a[j]){l[++num]=i,r[num]=j;break;}
            up.clear(),down.clear();
            dfs(1,0);
            printf("%d
    ",ans);
        }
    }
    
    int main(){
        solve();
        return 0;
    }
  • 相关阅读:
    Consuming RESTful Web服务
    任务调度
    查看公网出口ip
    Grafana变量
    正则表达式大杂烩
    seata 踩坑记录
    ES 重写分数查询
    浏览器下载文件乱码
    MySQL sql万花油优化
    ubuntu 使用杂记
  • 原文地址:https://www.cnblogs.com/five20/p/9575716.html
Copyright © 2020-2023  润新知