• [HAOI 2010] 计数


    [题目链接]

             https://www.lydsy.com/JudgeOnline/problem.php?id=2425

    [算法]

            类似与数位动态规划的思想 , 用组合数学进行简单推导即可

            时间复杂度 : O(L ^ 3)

    [代码]

            

    #include<bits/stdc++.h>
    using namespace std;
    #define N 110
    typedef long long ll;
    typedef long double ld;
    typedef unsigned long long ull;
    
    #define int ll
    
    int L , L0;
    int tmp[N] , digit[N] , cnt[N];
    char s[N];
    
    template <typename T> inline void chkmin(T &x , T y) { x = min(x , y); }
    template <typename T> inline void chkmax(T &x , T y) { x = max(x , y); }
    template <typename T> inline void read(T &x)
    {
       T f = 1; x = 0;
       char c = getchar();
       for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
       for (; isdigit(c); c = getchar()) x = (x << 3) + (x << 1) + c - '0';
       x *= f;
    }
    inline ll quickpow(ll a , int n)
    {
        ll b = a , res = 1;
        while (n > 0)
        {
            if (n & 1) res *= b;    
            b = b * b;
            n >>= 1;
        }    
        return res;
    }
    inline void add(int x , int val)
    {
        for (int i = 2; i <= (int)sqrt(x); i++)
        {
            if (x % i == 0)
            {
                while (x % i == 0)
                {
                    tmp[i] += val;
                    x /= i;
                }
            }
        }
        if (x > 1) tmp[x] += val;
    }
    
    signed main()
    {
        
        scanf("%s" , s + 1);
        L = strlen(s + 1);
        for (int i = 1; i <= L; i++)
        {
            if (s[i] > '0') ++L0;
            ++cnt[s[i] - '0'];
            digit[i] = s[i] - '0';
        }
        ll ans = 0;
        for (int k = 1; k < L;k++) 
        {
            if (k < L0) continue;
            memset(tmp , 0 , sizeof(tmp));
            for (int i = 1; i <= L0; i++) add(i , 1);
            for (int i = 1; i <= 9; i++)
            {
                for (int j = 1; j <= cnt[i]; j++)
                {
                    add(j , -1);
                }    
            }    
            for (int i = 1; i <= k - 1; i++) add(i , 1);
            for (int i = 1; i <= L0 - 1; i++) add(i , -1);
            for (int i = 1; i <= k - L0; i++) add(i , -1);
            ll cont = 1;
            for (int i = 1; i <= 100; i++) cont *= quickpow(i , tmp[i]);
            ans += cont;
        }
        for (int i = 1; i <= L; i++)
        {
            for (int j = 0; j < digit[i]; j++)
            {
                if (i == 1 && !j) continue;
                if (!j || cnt[j] > 0)
                {
                    --cnt[j];
                    int nowcnt = 0;
                    for (int k = 1; k <= 9; k++) nowcnt += cnt[k];
                    if (nowcnt > L - i) 
                    {                
                        ++cnt[j];
                        continue;
                    }
                    memset(tmp , 0 , sizeof(tmp));
                    for (int k = 1; k <= nowcnt; k++) add(k , 1);
                    for (int x = 1; x <= 9; x++)
                    {
                        for (int y = 1; y <= cnt[x]; y++)
                        {
                            add(y , -1);
                        }
                    }
                    for (int k = 1; k <= L - i; k++) add(k , 1);
                    for (int k = 1; k <= nowcnt; k++) add(k , -1);
                    for (int k = 1; k <= L - i - nowcnt; k++) add(k , -1);
                    ll cont = 1;
                    for (int k = 1; k <= 100; k++) cont *= quickpow(k , tmp[k]);
                    ans += cont;
                    ++cnt[j];    
                }    
            }    
            --cnt[digit[i]];
        }
        printf("%lld
    " , ans);
        
        return 0;
    }
  • 相关阅读:
    【Layui】11 滑块 Slider
    【Layui】10 颜色选择器 ColorPicker
    【Layui】09 动画 Anim
    【Layui】08 时间线 Timeline
    【Layui】07 徽章 Badge
    【Layui】06 面板 Panel
    【Layui】05 进度条 Progress
    【Layui】05 选项卡 Tabs
    【Layui】04 导航 Nav
    【Layui】03 按钮 Button
  • 原文地址:https://www.cnblogs.com/evenbao/p/10355678.html
Copyright © 2020-2023  润新知