• 数据变换+正态检验


    非正态分布-->正态:

    在将非正态分布的数据转换为正态分布的数据时,首先根据偏度、峰度等情况进行判断,不同的情况可以使用对数、开根号等转换方法:

    http://blog.sina.com.cn/s/blog_13ec735f50102x59u.html

     https://www.cnblogs.com/minks/p/6259883.html

    http://blog.sina.com.cn/s/blog_751bd9440102vy6j.html

    python-检验33品种数据是否是正态分布———————https://blog.csdn.net/qq_26948675/article/details/73648910(根据样本数选择合适的检验分布方法);http://blog.sina.com.cn/s/blog_80828ce00101oiso.html

    matlab判断是否服从正态分布:https://wenku.baidu.com/view/035d6bfadd3383c4bb4cd291.html

    判断数据是否服从正态分布方法:

    https://blog.csdn.net/QimaoRyan/article/details/72861387  CSDN方法

    https://wenku.baidu.com/view/043521325a8102d276a22f51.html

    ****************https://www.cnblogs.com/webRobot/p/6760839.html************

    # -*- coding: utf-8 -*-
    '''
    Author:Toby
    QQ:231469242,all right reversed,no commercial use
     
    '''
     
    import scipy
    from scipy.stats import f
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.stats as stats
    # additional packages
    from statsmodels.stats.diagnostic import lillifors
     
    group1=[2,3,7,2,6]
    group2=[10,8,7,5,10]
    group3=[10,13,14,13,15]
    list_groups=[group1,group2,group3]
    list_total=group1+group2+group3
     
     
    #正态分布测试
    def check_normality(testData):
        #20<样本数<50用normal test算法检验正态分布性
        if 20<len(testData) <50:
           p_value= stats.normaltest(testData)[1]
           if p_value<0.05:
               print"use normaltest"
               print "data are not normal distributed"
               return  False
           else:
               print"use normaltest"
               print "data are normal distributed"
               return True
         
        #样本数小于50用Shapiro-Wilk算法检验正态分布性
        if len(testData) <50:
           p_value= stats.shapiro(testData)[1]
           if p_value<0.05:
               print "use shapiro:"
               print "data are not normal distributed"
               return  False
           else:
               print "use shapiro:"
               print "data are normal distributed"
               return True
           
        if 300>=len(testData) >=50:
           p_value= lillifors(testData)[1]
           if p_value<0.05:
               print "use lillifors:"
               print "data are not normal distributed"
               return  False
           else:
               print "use lillifors:"
               print "data are normal distributed"
               return True
         
        if len(testData) >300
           p_value= stats.kstest(testData,'norm')[1]
           if p_value<0.05:
               print "use kstest:"
               print "data are not normal distributed"
               return  False
           else:
               print "use kstest:"
               print "data are normal distributed"
               return True
     
     
    #对所有样本组进行正态性检验
    def NormalTest(list_groups):
        for group in list_groups:
            #正态性检验
            status=check_normality(group1)
            if status==False :
                return False
                 
         
    #对所有样本组进行正态性检验   
    NormalTest(list_groups)
  • 相关阅读:
    匈牙利算法-二分图的最大匹配
    UOJ 407(IOI2018 D1T3)
    UOJ 460
    UOJ 405(IOI2018 D1T1)
    Codeforces 1110E
    2.文件结构
    1.常用快捷键
    Python3.x和Python2.x的差异
    javascript 常用内置对象
    94. Binary Tree Inorder Traversal(非递归实现二叉树的中序遍历)
  • 原文地址:https://www.cnblogs.com/eternallql/p/8915934.html
Copyright © 2020-2023  润新知