• HDU 1713 相遇周期 (最小公倍数)


    题意:。。。

    析:求周期就是这两个分数的最小公倍数,可以先通分,再计算分子的最小倍数。

    代码如下:

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include <cstdio>
    #include <string>
    #include <cstdlib>
    #include <cmath>
    #include <iostream>
    #include <cstring>
    #include <set>
    #include <queue>
    #include <algorithm>
    #include <vector>
    #include <map>
    #include <cctype>
    #include <cmath>
    #include <stack>
    #include <unordered_map>
    #include <unordered_set>
    #define debug() puts("++++");
    #define freopenr freopen("in.txt", "r", stdin)
    #define freopenw freopen("out.txt", "w", stdout)
    using namespace std;
    
    typedef long long LL;
    typedef pair<int, int> P;
    const int INF = 0x3f3f3f3f;
    const double inf = 0x3f3f3f3f3f3f;
    const double PI = acos(-1.0);
    const double eps = 1e-8;
    const int maxn = 1e5 + 5;
    const int mod = 2000;
    const int dr[] = {-1, 1, 0, 0};
    const int dc[] = {0, 0, 1, -1};
    const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
    int n, m;
    const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
    inline bool is_in(int r, int c){
        return r >= 0 && r < n && c >= 0 && c < m;
    }
    
    int main(){
        int T;  cin >> T;
        while(T--){
            LL a, b, c, d;
            scanf("%lld/%lld", &a, &b);
            scanf("%lld/%lld", &c, &d);
            LL tmp = b / __gcd(b, d) * d;
            a = a * (tmp / b);
            c = c * (tmp / d);
            LL t = a / __gcd(a, c) * c;
            LL x = __gcd(t, tmp);
            t /= x;
            tmp /= x;
            if(1 == tmp)  cout << t << endl;
            else cout << t << "/" << tmp << endl;
        }
        return 0;
    }
    
  • 相关阅读:
    【Leetcode Top-K问题 BFPRT】第三大的数(414)
    【Leetcode 堆、快速选择、Top-K问题 BFPRT】数组中的第K个最大元素(215)
    BFPRT算法
    对快速排序的分析 Quick Sort
    内部排序算法汇总
    【Leetcode堆和双端队列】滑动窗口最大值(239)
    Python里的堆heapq
    【Leetcode堆】数据流中的第K大元素(703)
    【Leetcode栈】有效的括号(20)
    【Leetcode链表】分隔链表(86)
  • 原文地址:https://www.cnblogs.com/dwtfukgv/p/6274839.html
Copyright © 2020-2023  润新知