• 【转载】 强化学习(十一) Prioritized Replay DQN


    原文地址:

    https://www.cnblogs.com/pinard/p/9797695.html

    ----------------------------------------------------------------------------------------

            在强化学习(十)Double DQN (DDQN)中,我们讲到了DDQN使用两个Q网络,用当前Q网络计算最大Q值对应的动作,用目标Q网络计算这个最大动作对应的目标Q值,进而消除贪婪法带来的偏差。今天我们在DDQN的基础上,对经验回放部分的逻辑做优化。对应的算法是Prioritized Replay DQN。

    本章内容主要参考了ICML 2016的deep RL tutorial和Prioritized Replay DQN的论文<Prioritized Experience Replay>(ICLR 2016)。

    1. Prioritized Replay DQN之前算法的问题

    在Prioritized Replay DQN之前,我们已经讨论了很多种DQN,比如Nature DQN, DDQN等,他们都是通过经验回放来采样,进而做目标Q值的计算的。在采样的时候,我们是一视同仁,在经验回放池里面的所有的样本都有相同的被采样到的概率。

    但是注意到在经验回放池里面的不同的样本由于TD误差的不同,对我们反向传播的作用是不一样的。TD误差越大,那么对我们反向传播的作用越大。而TD误差小的样本,由于TD误差小,对反向梯度的计算影响不大。在Q网络中,TD误差就是目标Q网络计算的目标Q值和当前Q网络计算的Q值之间的差距。

    这样如果TD误差的绝对值|δ(t)|较大的样本更容易被采样,则我们的算法会比较容易收敛。下面我们看看Prioritized Replay DQN的算法思路。

    2.  Prioritized Replay DQN算法的建模

    Prioritized Replay DQN根据每个样本的TD误差绝对值|δ(t)|,给定该样本的优先级正比于|δ(t)|,将这个优先级的值存入经验回放池。回忆下之前的DQN算法,我们仅仅只保存和环境交互得到的样本状态,动作,奖励等数据,没有优先级这个说法。

    由于引入了经验回放的优先级,那么Prioritized Replay DQN的经验回放池和之前的其他DQN算法的经验回放池就不一样了。因为这个优先级大小会影响它被采样的概率。在实际使用中,我们通常使用SumTree这样的二叉树结构来做我们的带优先级的经验回放池样本的存储。

    具体的SumTree树结构如下图:

            所有的经验回放样本只保存在最下面的叶子节点上面,一个节点一个样本。内部节点不保存样本数据。而叶子节点除了保存数据以外,还要保存该样本的优先级,就是图中的显示的数字。对于内部节点每个节点只保存自己的儿子节点的优先级值之和,如图中内部节点上显示的数字。

            这样保存有什么好处呢?主要是方便采样。以上面的树结构为例,根节点是42,如果要采样一个样本,那么我们可以在[0,42]之间做均匀采样,采样到哪个区间,就是哪个样本。比如我们采样到了26, 在(25-29)这个区间,那么就是第四个叶子节点被采样到。而注意到第三个叶子节点优先级最高,是12,它的区间13-25也是最长的,会比其他节点更容易被采样到。

    如果要采样两个样本,我们可以在[0,21],[21,42]两个区间做均匀采样,方法和上面采样一个样本类似。

    类似的采样算法思想我们在word2vec原理(三) 基于Negative Sampling的模型第四节中也有讲到。

    除了经验回放池,现在我们的Q网络的算法损失函数也有优化,之前我们的损失函数是:

           

    现在我们新的考虑了样本优先级的损失函数是

           

    第三个要注意的点就是当我们对Q网络参数进行了梯度更新后,需要重新计算TD误差,并将TD误差更新到SunTree上面。

    除了以上三个部分,Prioritized Replay DQN和DDQN的算法流程相同。

    3. Prioritized Replay DQN算法流程

    下面我们总结下Prioritized Replay DQN的算法流程,基于上一节的DDQN,因此这个算法我们应该叫做Prioritized Replay DDQN。主流程参考论文<Prioritized Experience Replay>(ICLR 2016)。

     

    注意,上述第二步的f步和g步的Q值计算也都需要通过Q网络计算得到。另外,实际应用中,为了算法较好的收敛,探索率εϵ需要随着迭代的进行而变小。

    4. Prioritized Replay DDQN算法流程

    下面我们给出Prioritized Replay DDQN算法的实例代码。仍然使用了OpenAI Gym中的CartPole-v0游戏来作为我们算法应用。CartPole-v0游戏的介绍参见这里。它比较简单,基本要求就是控制下面的cart移动使连接在上面的pole保持垂直不倒。这个任务只有两个离散动作,要么向左用力,要么向右用力。而state状态就是这个cart的位置和速度, pole的角度和角速度,4维的特征。坚持到200分的奖励则为过关。

    完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/ddqn_prioritised_replay.py, 代码中的SumTree的结构和经验回放池的结构参考了morvanzhou的github代码

    def sample(self, n):
            b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, self.tree.data[0].size)), np.empty((n, 1))
            pri_seg = self.tree.total_p / n       # priority segment
            self.beta = np.min([1., self.beta + self.beta_increment_per_sampling])  # max = 1
    
            min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_p     # for later calculate ISweight
            if min_prob == 0:
                min_prob = 0.00001
            for i in range(n):
                a, b = pri_seg * i, pri_seg * (i + 1)
                v = np.random.uniform(a, b)
                idx, p, data = self.tree.get_leaf(v)
                prob = p / self.tree.total_p
                ISWeights[i, 0] = np.power(prob/min_prob, -self.beta)
                b_idx[i], b_memory[i, :] = idx, data
            return b_idx, b_memory, ISWeights

    上述代码的采样在第二节已经讲到。根据树的优先级的和total_p和采样数n,将要采样的区间划分为n段,每段来进行均匀采样,根据采样到的值落到的区间,决定被采样到的叶子节点。当我们拿到第i段的均匀采样值v以后,就可以去SumTree中找对应的叶子节点拿样本数据,样本叶子节点序号以及样本优先级了。代码如下:

    def get_leaf(self, v):
            """
            Tree structure and array storage:
            Tree index:
            -> storing priority sum
                / 
        2
             /    / 
      4 5   6    -> storing priority for transitions
            Array type for storing:
            [0,1,2,3,4,5,6]
            """
            parent_idx = 0
            while True:     # the while loop is faster than the method in the reference code
                cl_idx = 2 * parent_idx + 1         # this leaf's left and right kids
                cr_idx = cl_idx + 1
                if cl_idx >= len(self.tree):        # reach bottom, end search
                    leaf_idx = parent_idx
                    break
                else:       # downward search, always search for a higher priority node
                    if v <= self.tree[cl_idx]:
                        parent_idx = cl_idx
                    else:
                        v -= self.tree[cl_idx]
                        parent_idx = cr_idx
    
            data_idx = leaf_idx - self.capacity + 1
            return leaf_idx, self.tree[leaf_idx], self.data[data_idx]

    除了采样部分,要注意的就是当梯度更新完毕后,我们要去更新SumTree的权重,代码如下,注意叶子节点的权重更新后,要向上回溯,更新所有祖先节点的权重。

        self.memory.batch_update(tree_idx, abs_errors)  # update priority
    def batch_update(self, tree_idx, abs_errors):
            abs_errors += self.epsilon  # convert to abs and avoid 0
            clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
            ps = np.power(clipped_errors, self.alpha)
            for ti, p in zip(tree_idx, ps):
                self.tree.update(ti, p)
    def update(self, tree_idx, p):
            change = p - self.tree[tree_idx]
            self.tree[tree_idx] = p
            # then propagate the change through tree
            while tree_idx != 0:    # this method is faster than the recursive loop in the reference code
                tree_idx = (tree_idx - 1) // 2
                self.tree[tree_idx] += change

    除了上面这部分的区别,和DDQN比,TensorFlow的网络结构流程中多了一个TD误差的计算节点,以及损失函数多了一个ISWeights系数。此外,区别不大。

    5. Prioritized Replay DQN小结

    Prioritized Replay DQN和DDQN相比,收敛速度有了很大的提高,避免了一些没有价值的迭代,因此是一个不错的优化点。同时它也可以直接集成DDQN算法,所以是一个比较常用的DQN算法。

    下一篇我们讨论DQN家族的另一个优化算法Duel DQN,它将价值Q分解为两部分,第一部分是仅仅受状态但不受动作影响的部分,第二部分才是同时受状态和动作影响的部分,算法的效果也很好。

    (欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

    ----------------------------------------------------------------------------------------------------------------

    #######################################################################
    # Copyright (C)                                                       #
    # 2016 - 2019 Pinard Liu(liujianping-ok@163.com)                      #
    # https://www.cnblogs.com/pinard                                      #
    # Permission given to modify the code as long as you keep this        #
    # declaration at the top                                              #
    #######################################################################
    # SumTree and Memory class are referred from https://github.com/MorvanZhou #
    
    ## https://www.cnblogs.com/pinard/p/9797695.html ##
    ## 强化学习(十一) Prioritized Replay DQN ##
    
    import gym
    import tensorflow as tf
    import numpy as np
    import random
    from collections import deque
    
    # Hyper Parameters for DQN
    GAMMA = 0.9 # discount factor for target Q
    INITIAL_EPSILON = 0.5 # starting value of epsilon
    FINAL_EPSILON = 0.01 # final value of epsilon
    REPLAY_SIZE = 10000 # experience replay buffer size
    BATCH_SIZE = 128 # size of minibatch
    REPLACE_TARGET_FREQ = 10 # frequency to update target Q network
    
    class SumTree(object):
        """
        This SumTree code is a modified version and the original code is from:
        https://github.com/jaara/AI-blog/blob/master/SumTree.py
        Story data with its priority in the tree.
        """
        data_pointer = 0
    
        def __init__(self, capacity):
            self.capacity = capacity  # for all priority values
            self.tree = np.zeros(2 * capacity - 1)
            # [--------------Parent nodes-------------][-------leaves to recode priority-------]
            #             size: capacity - 1                       size: capacity
            self.data = np.zeros(capacity, dtype=object)  # for all transitions
            # [--------------data frame-------------]
            #             size: capacity
    
        def add(self, p, data):
            tree_idx = self.data_pointer + self.capacity - 1
            self.data[self.data_pointer] = data  # update data_frame
            self.update(tree_idx, p)  # update tree_frame
    
            self.data_pointer += 1
            if self.data_pointer >= self.capacity:  # replace when exceed the capacity
                self.data_pointer = 0
    
        def update(self, tree_idx, p):
            change = p - self.tree[tree_idx]
            self.tree[tree_idx] = p
            # then propagate the change through tree
            while tree_idx != 0:    # this method is faster than the recursive loop in the reference code
                tree_idx = (tree_idx - 1) // 2
                self.tree[tree_idx] += change
    
        def get_leaf(self, v):
            """
            Tree structure and array storage:
            Tree index:
                 0         -> storing priority sum
                / 
              1     2
             /    / 
            3   4 5   6    -> storing priority for transitions
            Array type for storing:
            [0,1,2,3,4,5,6]
            """
            parent_idx = 0
            while True:     # the while loop is faster than the method in the reference code
                cl_idx = 2 * parent_idx + 1         # this leaf's left and right kids
                cr_idx = cl_idx + 1
                if cl_idx >= len(self.tree):        # reach bottom, end search
                    leaf_idx = parent_idx
                    break
                else:       # downward search, always search for a higher priority node
                    if v <= self.tree[cl_idx]:
                        parent_idx = cl_idx
                    else:
                        v -= self.tree[cl_idx]
                        parent_idx = cr_idx
    
            data_idx = leaf_idx - self.capacity + 1
            return leaf_idx, self.tree[leaf_idx], self.data[data_idx]
    
        @property
        def total_p(self):
            return self.tree[0]  # the root
    
    
    class Memory(object):  # stored as ( s, a, r, s_ ) in SumTree
        """
        This Memory class is modified based on the original code from:
        https://github.com/jaara/AI-blog/blob/master/Seaquest-DDQN-PER.py
        """
        epsilon = 0.01  # small amount to avoid zero priority
        alpha = 0.6  # [0~1] convert the importance of TD error to priority
        beta = 0.4  # importance-sampling, from initial value increasing to 1
        beta_increment_per_sampling = 0.001
        abs_err_upper = 1.  # clipped abs error
    
        def __init__(self, capacity):
            self.tree = SumTree(capacity)
    
        def store(self, transition):
            max_p = np.max(self.tree.tree[-self.tree.capacity:])
            if max_p == 0:
                max_p = self.abs_err_upper
            self.tree.add(max_p, transition)   # set the max p for new p
    
        def sample(self, n):
            b_idx, b_memory, ISWeights = np.empty((n,), dtype=np.int32), np.empty((n, self.tree.data[0].size)), np.empty((n, 1))
            pri_seg = self.tree.total_p / n       # priority segment
            self.beta = np.min([1., self.beta + self.beta_increment_per_sampling])  # max = 1
    
            min_prob = np.min(self.tree.tree[-self.tree.capacity:]) / self.tree.total_p     # for later calculate ISweight
            if min_prob == 0:
                min_prob = 0.00001
            for i in range(n):
                a, b = pri_seg * i, pri_seg * (i + 1)
                v = np.random.uniform(a, b)
                idx, p, data = self.tree.get_leaf(v)
                prob = p / self.tree.total_p
                ISWeights[i, 0] = np.power(prob/min_prob, -self.beta)
                b_idx[i], b_memory[i, :] = idx, data
            return b_idx, b_memory, ISWeights
    
        def batch_update(self, tree_idx, abs_errors):
            abs_errors += self.epsilon  # convert to abs and avoid 0
            clipped_errors = np.minimum(abs_errors, self.abs_err_upper)
            ps = np.power(clipped_errors, self.alpha)
            for ti, p in zip(tree_idx, ps):
                self.tree.update(ti, p)
    
    class DQN():
      # DQN Agent
      def __init__(self, env):
        # init experience replay
        self.replay_total = 0
        # init some parameters
        self.time_step = 0
        self.epsilon = INITIAL_EPSILON
        self.state_dim = env.observation_space.shape[0]
        self.action_dim = env.action_space.n
        self.memory = Memory(capacity=REPLAY_SIZE)
    
        self.create_Q_network()
        self.create_training_method()
    
        # Init session
        self.session = tf.InteractiveSession()
        self.session.run(tf.global_variables_initializer())
    
      def create_Q_network(self):
        # input layer
        self.state_input = tf.placeholder("float", [None, self.state_dim])
        self.ISWeights = tf.placeholder(tf.float32, [None, 1])
        # network weights
        with tf.variable_scope('current_net'):
            W1 = self.weight_variable([self.state_dim,20])
            b1 = self.bias_variable([20])
            W2 = self.weight_variable([20,self.action_dim])
            b2 = self.bias_variable([self.action_dim])
    
            # hidden layers
            h_layer = tf.nn.relu(tf.matmul(self.state_input,W1) + b1)
            # Q Value layer
            self.Q_value = tf.matmul(h_layer,W2) + b2
    
        with tf.variable_scope('target_net'):
            W1t = self.weight_variable([self.state_dim,20])
            b1t = self.bias_variable([20])
            W2t = self.weight_variable([20,self.action_dim])
            b2t = self.bias_variable([self.action_dim])
    
            # hidden layers
            h_layer_t = tf.nn.relu(tf.matmul(self.state_input,W1t) + b1t)
            # Q Value layer
            self.target_Q_value = tf.matmul(h_layer,W2t) + b2t
    
        t_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='target_net')
        e_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='current_net')
    
        with tf.variable_scope('soft_replacement'):
            self.target_replace_op = [tf.assign(t, e) for t, e in zip(t_params, e_params)]
    
      def create_training_method(self):
        self.action_input = tf.placeholder("float",[None,self.action_dim]) # one hot presentation
        self.y_input = tf.placeholder("float",[None])
        Q_action = tf.reduce_sum(tf.multiply(self.Q_value,self.action_input),reduction_indices = 1)
        self.cost = tf.reduce_mean(self.ISWeights *(tf.square(self.y_input - Q_action)))
        self.abs_errors =tf.abs(self.y_input - Q_action)
        self.optimizer = tf.train.AdamOptimizer(0.0001).minimize(self.cost)
    
      def store_transition(self, s, a, r, s_, done):
            transition = np.hstack((s, a, r, s_, done))
            self.memory.store(transition)    # have high priority for newly arrived transition
    
      def perceive(self,state,action,reward,next_state,done):
        one_hot_action = np.zeros(self.action_dim)
        one_hot_action[action] = 1
        #print(state,one_hot_action,reward,next_state,done)
        self.store_transition(state,one_hot_action,reward,next_state,done)
        self.replay_total += 1
        if self.replay_total > BATCH_SIZE:
            self.train_Q_network()
    
      def train_Q_network(self):
        self.time_step += 1
        # Step 1: obtain random minibatch from replay memory
        tree_idx, minibatch, ISWeights = self.memory.sample(BATCH_SIZE)
        state_batch = minibatch[:,0:4]
        action_batch =  minibatch[:,4:6]
        reward_batch = [data[6] for data in minibatch]
        next_state_batch = minibatch[:,7:11]
        # Step 2: calculate y
        y_batch = []
        current_Q_batch = self.Q_value.eval(feed_dict={self.state_input: next_state_batch})
        max_action_next = np.argmax(current_Q_batch, axis=1)
        target_Q_batch = self.target_Q_value.eval(feed_dict={self.state_input: next_state_batch})
    
        for i in range(0,BATCH_SIZE):
          done = minibatch[i][11]
          if done:
            y_batch.append(reward_batch[i])
          else :
            target_Q_value = target_Q_batch[i, max_action_next[i]]
            y_batch.append(reward_batch[i] + GAMMA * target_Q_value)
    
        self.optimizer.run(feed_dict={
          self.y_input:y_batch,
          self.action_input:action_batch,
          self.state_input:state_batch,
          self.ISWeights: ISWeights
          })
        _, abs_errors, _ = self.session.run([self.optimizer, self.abs_errors, self.cost], feed_dict={
                              self.y_input: y_batch,
                              self.action_input: action_batch,
                              self.state_input: state_batch,
                              self.ISWeights: ISWeights
                              })
        self.memory.batch_update(tree_idx, abs_errors)  # update priority
    
      def egreedy_action(self,state):
        Q_value = self.Q_value.eval(feed_dict = {
          self.state_input:[state]
          })[0]
        if random.random() <= self.epsilon:
            self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000
            return random.randint(0,self.action_dim - 1)
        else:
            self.epsilon -= (INITIAL_EPSILON - FINAL_EPSILON) / 10000
            return np.argmax(Q_value)
    
      def action(self,state):
        return np.argmax(self.Q_value.eval(feed_dict = {
          self.state_input:[state]
          })[0])
    
      def update_target_q_network(self, episode):
        # update target Q netowrk
        if episode % REPLACE_TARGET_FREQ == 0:
            self.session.run(self.target_replace_op)
            #print('episode '+str(episode) +', target Q network params replaced!')
    
      def weight_variable(self,shape):
        initial = tf.truncated_normal(shape)
        return tf.Variable(initial)
    
      def bias_variable(self,shape):
        initial = tf.constant(0.01, shape = shape)
        return tf.Variable(initial)
    # ---------------------------------------------------------
    # Hyper Parameters
    ENV_NAME = 'CartPole-v0'
    EPISODE = 3000 # Episode limitation
    STEP = 300 # Step limitation in an episode
    TEST = 5 # The number of experiment test every 100 episode
    
    def main():
      # initialize OpenAI Gym env and dqn agent
      env = gym.make(ENV_NAME)
      agent = DQN(env)
    
      for episode in range(EPISODE):
        # initialize task
        state = env.reset()
        # Train
        for step in range(STEP):
          action = agent.egreedy_action(state) # e-greedy action for train
          next_state,reward,done,_ = env.step(action)
          # Define reward for agent
          reward = -1 if done else 0.1
          agent.perceive(state,action,reward,next_state,done)
          state = next_state
          if done:
            break
        # Test every 100 episodes
        if episode % 100 == 0:
          total_reward = 0
          for i in range(TEST):
            state = env.reset()
            for j in range(STEP):
              env.render()
              action = agent.action(state) # direct action for test
              state,reward,done,_ = env.step(action)
              total_reward += reward
              if done:
                break
          ave_reward = total_reward/TEST
          print ('episode: ',episode,'Evaluation Average Reward:',ave_reward)
        agent.update_target_q_network(episode)
    
    if __name__ == '__main__':
        main()

    ps:  prioritized replay DQN 运算速度奇慢,大约能有数倍分之前面的DQN算法,但是效果看来却有提升。

     

  • 相关阅读:
    c# 面相对象4-多态性
    c# 面相对象3-之继承性
    c# 面相对象2-之封装性
    面向对象和面向过程的区别
    <title>下拉菜单</title>
    15-07-31 javascript--事件
    DOM操作
    格式与布局
    c# 函数相关练习
    c# 哈希表集合;函数
  • 原文地址:https://www.cnblogs.com/devilmaycry812839668/p/10681479.html
Copyright © 2020-2023  润新知