• poj 2553 The Bottom of a Graph(强连通分量+缩点)


    题目地址:http://poj.org/problem?id=2553

    The Bottom of a Graph
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 7881   Accepted: 3263

    Description

    We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph.  Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).  Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from v, v is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

    Input

    The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

    Output

    For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

    Sample Input

    3 3
    1 3 2 3 3 1
    2 1
    1 2
    0
    

    Sample Output

    1 3
    2
    

    Source

     
    【题解】:
      找到入度为0的所有强连通分量,将其中的点排序后输出
      这题跟poj 2186 很类似
      
    【code】:
      
      1 /**
      2 Judge Status:Accepted      Memory:1488K
      3 Time:125MS      Language:G++
      4 Code Length:2443B   Author:cj
      5 */
      6 #include<iostream>
      7 #include<stdio.h>
      8 #include<string.h>
      9 #include<stack>
     10 #include<vector>
     11 #include<algorithm>
     12 
     13 #define N 10010
     14 using namespace std;
     15 
     16 vector<int> G[N];
     17 stack<int> stk;
     18 int pre[N],lowlink[N],sccno[N],scc_cnt,dfn_clock,out[N],counter[N];
     19 
     20 
     21 void DFN(int u)  //tarjan算法
     22 {
     23     lowlink[u] = pre[u] = ++dfn_clock;
     24     stk.push(u);
     25     int i;
     26     for(i=0;i<G[u].size();i++)
     27     {
     28         int v = G[u][i];
     29         if(!pre[v])
     30         {
     31             DFN(v);
     32             lowlink[u] = min(lowlink[u],lowlink[v]);
     33         }
     34         else if(!sccno[v])
     35         {
     36             lowlink[u] = min(lowlink[u],pre[v]);
     37         }
     38     }
     39     if(lowlink[u]==pre[u])
     40     {
     41         scc_cnt++;  //强连通图的个数标记
     42         while(1)
     43         {
     44             int x = stk.top();
     45             stk.pop();
     46             sccno[x] = scc_cnt;
     47             if(x==u)    break;
     48         }
     49     }
     50 }
     51 
     52 void findscc(int n)
     53 {
     54     int i;
     55     scc_cnt = dfn_clock = 0;
     56     memset(pre,0,sizeof(pre));
     57     memset(lowlink,0,sizeof(lowlink));
     58     memset(sccno,0,sizeof(sccno));
     59     for(i=1;i<=n;i++)
     60         if(!pre[i])
     61             DFN(i);
     62 }
     63 
     64 int main()
     65 {
     66     int n,m;
     67     while(~scanf("%d",&n)&&n)
     68     {
     69         scanf("%d",&m);
     70         int i;
     71         for(i=1;i<=n;i++)
     72             G[i].clear();
     73         for(i=0;i<m;i++)
     74         {
     75             int a,b;
     76             scanf("%d%d",&a,&b);
     77             G[a].push_back(b);  // 得到图
     78         }
     79         findscc(n);  //查找强连通图
     80         int j;
     81         memset(out,0,sizeof(out));
     82         memset(counter,0,sizeof(counter));
     83 
     84         for(i=1;i<=n;i++)  //遍历一边图,查找统计个点缩点后的出度
     85         {
     86             for(j=0;j<G[i].size();j++)
     87             {
     88                 int v = G[i][j];
     89                 if(sccno[i]!=sccno[v])
     90                 {
     91                     out[sccno[i]]++;  //出度
     92                 }
     93             }
     94         }
     95         for(i=1;i<=scc_cnt;i++)
     96         {
     97             if(!out[i])  //出度为0的强连通分量
     98             {
     99                 counter[i] = 1;  //标记
    100             }
    101         }
    102 
    103         int pl = 0;
    104         for(i=1;i<=n;i++)
    105             if(counter[sccno[i]])  //是否被标记,从下到大
    106             {
    107                 if(pl)  printf(" %d",i);
    108                 else printf("%d",i);
    109                 pl = 1;
    110             }
    111         putchar(10);
    112     }
    113     return 0;
    114 }
  • 相关阅读:
    使用ConcurrentHashMap需要知道的细节
    并查集(Union-Find)
    LeetCode2
    补充之前博客的几种排序--希尔排序、堆排序、归并排序
    左式二叉堆
    优先队列的一种实现--堆ADT
    开放地址法散列表ADT
    分离链表法散列ADT
    AVL树
    二叉查找树ADT--C语言描述
  • 原文地址:https://www.cnblogs.com/crazyapple/p/3250357.html
Copyright © 2020-2023  润新知