• POJ 1236 Network of Schools


    Network of Schools

    Time Limit: 1000ms
    Memory Limit: 10000KB
    This problem will be judged on PKU. Original ID: 1236
    64-bit integer IO format: %lld      Java class name: Main
     
    A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
    You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 
     

    Input

    The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.
     

    Output

    Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.
     

    Sample Input

    5
    2 4 3 0
    4 5 0
    0
    0
    1 0
    

    Sample Output

    1
    2
    

    Source

     
    解题:强连通缩点,求入度为0的块数,和出度为0的块数。
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <cmath>
     5 #include <algorithm>
     6 #include <climits>
     7 #include <vector>
     8 #include <queue>
     9 #include <cstdlib>
    10 #include <string>
    11 #include <set>
    12 #include <stack>
    13 #define LL long long
    14 #define pii pair<int,int>
    15 #define INF 0x3f3f3f3f
    16 using namespace std;
    17 const int maxn = 110;
    18 vector<int>g[maxn];
    19 stack<int>stk;
    20 int dfn[maxn],low[maxn],belong[maxn],cnt,scc;
    21 int n,in[maxn],out[maxn];
    22 bool instack[maxn];
    23 void tarjan(int u){
    24     dfn[u] = low[u] = ++cnt;
    25     instack[u] = true;
    26     stk.push(u);
    27     for(int i = 0; i < g[u].size(); i++){
    28         if(!dfn[g[u][i]]){
    29             tarjan(g[u][i]);
    30             low[u] = min(low[u],low[g[u][i]]);
    31         }else if(dfn[g[u][i]] && instack[g[u][i]]) low[u] = min(low[u],dfn[g[u][i]]);
    32     }
    33     if(dfn[u] == low[u]){
    34         scc++;
    35         int v;
    36         do{
    37             v = stk.top();
    38             instack[v] = false;
    39             stk.pop();
    40             belong[v] = scc;
    41         }while(v != u);
    42     }
    43 }
    44 int main(){
    45     int i,j,v;
    46     while(~scanf("%d",&n)){
    47         for(i = 0; i <= n; i++){
    48             dfn[i] = low[i] = belong[i] = 0;
    49             in[i] = out[i] = 0;
    50             instack[i] = false;
    51             g[i].clear();
    52         }
    53         while(!stk.empty()) stk.pop();
    54         cnt = scc = 0;
    55         for(i = 1; i <= n; i++)
    56             while(scanf("%d",&v),v) g[i].push_back(v);
    57         for(i = 1; i <= n; i++) if(!dfn[i]) tarjan(i);
    58         for(i = 1; i <= n; i++){
    59             for(j = 0; j < g[i].size(); j++){
    60                 if(belong[i] != belong[g[i][j]]){
    61                     in[belong[g[i][j]]]++;
    62                     out[belong[i]]++;
    63                 }
    64             }
    65         }
    66         int ans1 = 0,ans2 = 0;
    67         for(i = 1; i <= scc; i++){
    68             if(!in[i]) ans1++;
    69             if(!out[i]) ans2++;
    70         }
    71         printf("%d
    %d
    ",ans1,scc == 1?0:max(ans1,ans2));
    72     }
    73     return 0;
    74 }
    View Code
  • 相关阅读:
    headfirst设计模式(6)—单例模式
    headfirst设计模式(5)—工厂模式体系分析及抽象工厂模式
    headfirst设计模式(4)—工厂模式
    headfirst设计模式(3)—装饰者模式
    headfirst设计模式(2)—观察者模式
    headfirst设计模式(1)—策略模式
    BeanFactory 与 FactoryBean
    两个List集合取交集、并集、差集
    服务编排
    oracle报错ORA-01843: not a valid month
  • 原文地址:https://www.cnblogs.com/crackpotisback/p/3935359.html
Copyright © 2020-2023  润新知