• HIVE UDF函数和Transform


    1、编写UDF函数,来将原来创建的buck_ip_test表中的英文国籍转换成中文

    iptest.txt文件内容:

    1	张三	192.168.1.1	china
    2	李四	192.168.1.2	china
    3	王五	192.168.1.3	china
    4	makjon	192.168.1.4	china
    1	aa	192.168.1.1	japan
    2	bb	192.168.1.2	japan
    3	cc	192.168.1.3	japan
    4	makjon	192.168.1.4	japan
    

    表数据截图:

    UdfTest.java代码如下:

    import java.util.HashMap;
    
    import org.apache.hadoop.hive.ql.exec.UDF;
    
    public class UdfTest extends UDF{
    	
    	private static HashMap<String,String> countryMap = new HashMap();
    	
    	static {
    		countryMap.put("china", "中国");
    		countryMap.put("japan", "日本");
    		
    	}
    	
    	//此段代码进行国家的转换
    	public  String evaluate(String str){
    		String country  = countryMap.get(str);
    		if(country ==null){
    			return "其他";
    		}else{
    			return country;
    		}
    	}
        
    	//在函数中可以定义多个evaluate方法,进行重载
    	//此段代码进行国家和IP的拼接,测试重载用
    	public  String evaluate(String country,String ip){
    		
    			return country+"_"+ip;
    	}
    	
    	/*
    	 *
    	 *此段代码用于测试上面编写的方法是否正确
    	public static void main(String[] args) {
    		UdfTest ut = new UdfTest();
    		// TODO Auto-generated method stub
    		String aa = ut.evaluate("AAAAAA");
            System.out.println(aa);
    	}
    	*/
    
    }
    

    在eclipse测试无问题后,导出成utftest.jar并上传到服务器的/opt目录

    进入hive,执行:
    add jar /opt/udftest.jar;
    将jar包导入到hive中
    再执行create temporary function convert as  'UdfTest';
    创建convert方法
    执行结果如下图:
    

    然后在Hive中进行查询:

     select country,convert(country,ip),convert(country) from buck_ip_test;
    

    执行结果如下图:

    这样一个简单的udf就开发完成啦

    2、Hive中使用udf对JSON进行处理

     数据文件movie.txt内容如下:

    {"movie":"2797","rate":"4","timeStamp":"978302039","uid":"1"}
    {"movie":"2321","rate":"3","timeStamp":"978302205","uid":"1"}
    {"movie":"720","rate":"3","timeStamp":"978300760","uid":"1"}
    {"movie":"1270","rate":"5","timeStamp":"978300055","uid":"1"}
    {"movie":"527","rate":"5","timeStamp":"978824195","uid":"1"}
    {"movie":"2340","rate":"3","timeStamp":"978300103","uid":"1"}
    {"movie":"48","rate":"5","timeStamp":"978824351","uid":"1"}
    {"movie":"1097","rate":"4","timeStamp":"978301953","uid":"1"}
    {"movie":"1721","rate":"4","timeStamp":"978300055","uid":"1"}
    {"movie":"1545","rate":"4","timeStamp":"978824139","uid":"1"}
    

    将数据导入到hive中的rating表中:

    create table rating(rate string);
    load data local inpath '/opt/movie.txt' overwrite into table rating;
    select * from rating;
    

    结果如下图:

    在本例中我们使用ObjectMapper来处理json的数据,

    首先创建MovierateBean.java,代码如下:

    import java.sql.Timestamp;
    
    public class MovierateBean {
    	private String movie;
    	private String rate;
    	private Timestamp timeStamp;
    	private String uid;
    	
    	public String getMovie() {
    		return movie;
    	}
    
    	public void setMovie(String movie) {
    		this.movie = movie;
    	}
    
    	public String getRate() {
    		return rate;
    	}
    
    	public void setRate(String rate) {
    		this.rate = rate;
    	}
    	
    	public Timestamp getTimeStamp() {
    		return timeStamp;
    	}
    
    	public void setTimeStamp(Timestamp timeStamp) {
    		this.timeStamp = timeStamp;
    	}
    
    	public String getUid() {
    		return uid;
    	}
    
    	public void setUid(String uid) {
    		this.uid = uid;
    	}
    
    	@Override
    	public String toString() {
    		// TODO Auto-generated method stub
    		return movie+"	"+rate+"	"+timeStamp+"	"+uid;
    	}
    	
    	
    }
    

      

    然后创建MovieJsonTest.java,代码如下:

    import org.apache.hadoop.hive.ql.exec.UDF;
    import org.codehaus.jackson.map.ObjectMapper;
    
    public class MovieJsonTest extends UDF {
    	
    	
    	public String evaluate(String jsonline){
    		ObjectMapper om = new ObjectMapper();
    		try{
    			MovierateBean  bean = om.readValue(jsonline,MovierateBean.class);
    			return bean.toString();
    		}catch(Exception e){
    			return(jsonline);
    		}	
    		
    	}
    	
    	/*
    	public static void main(String[] args){
    		MovieJsonTest mt = new MovieJsonTest();
    		String jsonline="{"movie":"527","rate":"5","timeStamp":"978824195","uid":"1"}";
    		System.out.println(mt.evaluate(jsonline));
    	}
    	*/
    
    
    }

    将上述文件打包成movie.jar,并上传到服务器的/opt目录下,并执行如下代码:

    add jar /opt/movie.jar;
    create temporary function movie_convert as 'MovieJsonTest';
    select movie_convert(rate) from rating;
    

    执行结果如下:

    可以看到原来的json格式以及被解析成对应的字段了

    3、Hive Transform简单介绍

    Hive的UDF、UDAF需要通过java语言编写。Hive提供了另一种方式,达到自定义UDF和UDAF的目的,但使用方法更简单。这就是TRANSFORM。TRANSFORM语言支持通过多种语言,实现类似于UDF的功能。

    Hive还提供了MAP和REDUCE这两个关键字。但MAP和REDUCE一般可理解为只是TRANSFORM的别名。并不代表一般是在map阶段或者是在reduce阶段调用。详见官网说明。

    我们可以使用如下的python脚本代替上面的UDF函数:

    服务器端/opt/movie_trans.py脚本内容如下:

    import sys
    import datetime
    import json
    
    for line in sys.stdin:
        #line='{"movie":"2797","rate":"4","timeStamp":"978302039","uid":"1"}'
        line = line.strip()
        hjson = json.loads(line)
        movie = hjson['movie']
        rate = hjson['rate']
        timeStamp = hjson['timeStamp']
        uid = hjson['uid']
        timeStamp = datetime.datetime.fromtimestamp(float(timeStamp))
        print '	'.join([movie, rate, str(timeStamp),uid])
    

    在hive中执行如下脚本:

    ADD FILE /opt/movie_trans.py;
    
    SELECT
      TRANSFORM (rate)
      USING 'python movie_trans.py'
      AS (movie,rate, timeStamp, uid)
    FROM rating;
    

    执行结果如下图:

    可以看到我们使用transform实现了上述UDF实现的功能

  • 相关阅读:
    ArcGIS for window mobile 数据打开
    Linux学习拾遗
    ArcEngine 连接sql server sde
    Server Objects Extension(SOE)开发(三)
    Server Objects Extension(SOE)开发(二)
    C# 调用ArcGIS server admin api
    切片文件发布成切片服务
    Printing tools 自定义模板打印的实现
    ubuntu下安装matlab
    修改ubuntu中的gcc和g++版本
  • 原文地址:https://www.cnblogs.com/cangos/p/6486651.html
Copyright © 2020-2023  润新知