keras-anomaly-detection
Anomaly detection implemented in Keras
The source codes of the recurrent, convolutional and feedforward networks auto-encoders for anomaly detection can be found in keras_anomaly_detection/library/convolutional.py and keras_anomaly_detection/library/recurrent.py and keras_anomaly_detection/library/feedforward.py
The the anomaly detection is implemented using auto-encoder with convolutional, feedforward, and recurrent networks and can be applied to:
- timeseries data to detect timeseries time windows that have anomaly pattern
- LstmAutoEncoder in keras_anomaly_detection/library/recurrent.py
- Conv1DAutoEncoder in keras_anomaly_detection/library/convolutional.py
- CnnLstmAutoEncoder in keras_anomaly_detection/library/recurrent.py
- BidirectionalLstmAutoEncoder in keras_anomaly_detection/library/recurrent.py
- structured data (i.e., tabular data) to detect anomaly in data records
- Conv1DAutoEncoder in keras_anomaly_detection/library/convolutional.py
- FeedforwardAutoEncoder in keras_anomaly_detection/library/feedforward.py
看LSTM的模型吧:
def create_model(time_window_size, metric): model = Sequential() model.add(LSTM(units=128, input_shape=(time_window_size, 1), return_sequences=False)) model.add(Dense(units=time_window_size, activation='linear')) model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric]) print(model.summary()) return model
再看feedforward的模型:
def create_model(self, input_dim): encoding_dim = 14 input_layer = Input(shape=(input_dim,)) encoder = Dense(encoding_dim, activation="tanh", activity_regularizer=regularizers.l1(10e-5))(input_layer) encoder = Dense(encoding_dim // 2, activation="relu")(encoder) decoder = Dense(encoding_dim // 2, activation='tanh')(encoder) decoder = Dense(input_dim, activation='relu')(decoder) model = Model(inputs=input_layer, outputs=decoder) model.compile(optimizer='adam', loss='mean_squared_error', metrics=['accuracy'])
CNN的:
def create_model(time_window_size, metric): model = Sequential() model.add(Conv1D(filters=256, kernel_size=5, padding='same', activation='relu', input_shape=(time_window_size, 1))) model.add(GlobalMaxPool1D()) model.add(Dense(units=time_window_size, activation='linear')) model.compile(optimizer='adam', loss='mean_squared_error', metrics=[metric]) print(model.summary()) return model
都是将输出设置成自己,异常点就是查看偏离那90%的预测error较大的点。