• DQN 处理 CartPole 问题——使用强化学习,本质上是训练MLP,预测每一个动作的得分


    代码:

    # -*- coding: utf-8 -*-
    import random
    import gym
    import numpy as np
    from collections import deque
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.optimizers import Adam
    from keras.utils.vis_utils import plot_model
    
    EPISODES = 1000
    
    
    class DQNAgent:
        def __init__(self, state_size, action_size):
            self.state_size = state_size
            self.action_size = action_size
            self.memory = deque(maxlen=2000)
            self.gamma = 0.95    # discount rate
            #self.epsilon = 1.0  # exploration rate
            self.epsilon = 0.4  # exploration rate
            self.epsilon_min = 0.01
            self.epsilon_decay = 0.995
            self.learning_rate = 0.001
            self.model = self._build_model()
            #可视化MLP结构
            plot_model(self.model, to_file='dqn-cartpole-v0-mlp.png', show_shapes=False)
    
        def _build_model(self):
            # Neural Net for Deep-Q learning Model
            model = Sequential()
            model.add(Dense(24, input_dim=self.state_size, activation='relu'))
            model.add(Dense(24, activation='relu'))
            model.add(Dense(self.action_size, activation='linear'))
            model.compile(loss='mse',
                          optimizer=Adam(lr=self.learning_rate))
            return model
    
        def remember(self, state, action, reward, next_state, done):
            self.memory.append((state, action, reward, next_state, done))
    
        def act(self, state):
            if np.random.rand() <= self.epsilon:
                return random.randrange(self.action_size)
            act_values = self.model.predict(state)
            #print("act_values:")
            #print(act_values)
            return np.argmax(act_values[0])  # returns action
    
        def replay(self, batch_size):
            minibatch = random.sample(self.memory, batch_size)
            for state, action, reward, next_state, done in minibatch:
                target = reward
                if not done:
                    target = (reward + self.gamma *
                              np.amax(self.model.predict(next_state)[0]))
                target_f = self.model.predict(state)
                target_f[0][action] = target
                self.model.fit(state, target_f, epochs=1, verbose=0)
            #if self.epsilon > self.epsilon_min:
            #    self.epsilon *= self.epsilon_decay
    
        def load(self, name):
            self.model.load_weights(name)
    
        def save(self, name):
            self.model.save_weights(name)
    
    
    if __name__ == "__main__":
        env = gym.make('CartPole-v0')
        state_size = env.observation_space.shape[0]
        action_size = env.action_space.n
    
        #print(state_size)
        #print(action_size)
    
        agent = DQNAgent(state_size, action_size)
    
        done = False
        batch_size = 32
        avg=0
    
        for e in range(EPISODES):
            state = env.reset()
            state = np.reshape(state, [1, state_size])
            for time in range(500):
                env.render()
                action = agent.act(state)
                next_state, reward, done, _ = env.step(action)
                reward = reward if not done else -10
                next_state = np.reshape(next_state, [1, state_size])
                agent.remember(state, action, reward, next_state, done)
                state = next_state
                if done:
                    print("episode: {}/{}, score: {}, e: {:.2}"
                          .format(e, EPISODES, time, agent.epsilon))
                    avg+=time
                    break
            if len(agent.memory) > batch_size:
                agent.replay(batch_size)
    
        print("Avg score:{}".format(avg/1000))
    

     基本思路:

    让他自己训练玩这个游戏(每次应该左右移动的距离),基本思路就是:

    本质上就是使用MLP训练(动作,得分)

    这个得分是坚持时间的长短,如果时间长得分就高。

    但是我感觉这个gym自己做了很多事情,比如度量奖励分数,action描述等。待进一步挖掘!

  • 相关阅读:
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    Chisel3
    UVa 12716 (GCD == XOR) GCD XOR
  • 原文地址:https://www.cnblogs.com/bonelee/p/9146540.html
Copyright © 2020-2023  润新知