• $CF 634 (Div 3)$


    (CF 634 (Div3))

    (A.)

    给定 (n),问有多少对正整数 (a, b),使得 (a + b = n)(a > b)

    如果 (n) 是偶数,那么 (ans = n / 2 - 1)

    如果 (n) 是奇数,那么 (ans = n / 2)

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 1e5 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
     
     
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
     
    int t, n;
    int main()
    {
        t = read();
        while(t--) {
            n = read();
            int ans = 0;
            if(n % 2) ans = n / 2;
            else ans = n / 2 - 1;
            printf("%d
    ", ans);
        }
        return 0;
    }
    

    (B.)

    构造一个长度为 (n) 的字符串,使得每一个长为 (a) 的子串都只含有 (b) 个不同的字符

    构造方式如下

    先按照顺序填上前 (b) 个小写字母,剩下的 (a - b) 个位置填第 (b) 个字符

    将这样一个子串 (s) 填满整个长为 (n) 的字符串即可

    例如样例 (7 5 3)

    构造 (s = abccc),答案即为 (abcccab)

    感性理解,就是一个贪吃蛇在子串 (s) 上移动,(s) 的正确性构造保证了整个字符串的正确性...

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 1e5 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
     
     
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
     
    int t, a, b, c;
    int main()
    {
        t = read();
        while(t--) {
            a = read(), b = read(), c = read();
            string s = "";
            for(int i = 0; i < c; ++i)
                s += 'a' + i;
            for(int i = 0; i < b - c; ++i)
                s += 'a' + c - 1;
            for(int i = 0; i < a / b; ++i)
                cout<<s;
            for(int i = 0; i < a % b; ++i)
                cout<<s[i];
            cout<<endl;
        }
        return 0;
    }
    

    (C.)

    给定一组数 (a),要求将其划分为两个长度一样的集合 (s, t)(s) 中每个数都一样,(t) 中每个数都不一样,(t) 中的数也可以出现在 (s) 中,求最大的可能的长度

    一开始的想法是二分长度的答案,用 (map) 记录每个数出现的次数,然后去 (check)

    后来 (get) 了一个比较好的想法

    (x) 表示 (a)(distinct) 的值的数量

    (y) 表示 (a) 中出现次数最多的值的出现次数

    (if x = y, ans = x - 1)
    (else, ans = min(x, y))

    /*二分答案*/
    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 2e5 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
     
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
     
    int t, n, a[N];
    map<int, int> mp;
     
    bool check(int x)
    {
        int f1 = 0, f2 = 0;
        set<int> st;
        for(int i = 1; i <= n; ++i)
            st.insert(a[i]);
        for(int i = 1; i <= n; ++i) {
            if(mp[a[i]] >= x) {
                if(mp[a[i]] == x) st.erase(a[i]);
                if(st.size() >= x) return 1;
                st.insert(a[i]);
            }
        }
        return 0;
    }
    int main()
    {
        t = read();
        while(t--) {
            mp.clear();
            n = read();
            for(int i = 1; i <= n; ++i) a[i] = read(), mp[a[i]]++;
            int l = 0, r = n / 2;
            int ans = 0;
            while(l <= r) {
                int mid = l + r >> 1;
                //cout<<l<<' '<<r<<endl;
                if(check(mid)) ans = mid, l = mid + 1;
                else r = mid - 1;
            }
            printf("%d
    ", ans);
        }
        return 0;
    }
    /*
    4
    7
    4 2 4 1 4 3 4
    5
    2 1 5 4 3
    1
    1
    4
    1 1 1 3
    */
    
    /*good idea*/
    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 2e5 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
    
    
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
    
    int t, n;
    map<int, int> mp;
    
    int main()
    {
        t = read();
        while(t--) {
            mp.clear();
            n = read();
            int x = 0;
            for(int i = 1; i <= n; ++i) {
                int y = read();
                mp[y]++;
                x = max(x, mp[y]);
            }
            int ans = 0;
            if(mp.size() == x) ans = x - 1;
            else ans = min((int)mp.size(), x);
            printf("%d
    ", ans);
        }
        return 0;
    }
    /*
    4
    7
    4 2 4 1 4 3 4
    5
    2 1 5 4 3
    1
    1
    4
    1 1 1 3
    */
    

    (D.)

    给定一个正确的数独,允许至多修改 (9) 个数字,使得其成为 (Anti-Sudoku)

    数独满足

    • 每一行不重数
    • 每一列不重数字
    • 每一个 (3 imes 3) 的正方形不重数字

    (Anti-Sudoku) 满足

    • 每一行至少有两个位置重复
    • 每一列至少有两个位置重复
    • 每一个 (3 imes 3) 的正方形至少有两个位置重复

    观察发现,每个正方形内都要修改一个位置,并且这些位置所在的行、列不能重复,可以用类似于 (N) 皇后的搜索方法来写

    后来 (get) 到一个很好的 (idea),既然给定的是正确的数独,那么我们只需要将任意一个数换成另一个数字就可以了,例如将所有的 (3) 换成 (1)

    /*dfs*/
    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 2e5 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
    int t, n, vis[20][20];
    char g[20][20];
    int f = 0, cnt;
    const int dx[] = {0, 1, 1, 1, 2, 2, 2, 3, 3, 3};
    const int dy[] = {0, 1, 2, 3, 1, 2, 3, 1, 2, 3};
    int row[20], col[20];
     
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
     
    void out()
    {
        //puts("XCY");
        for(int i = 1; i <= 9; ++i)
            puts(g[i] + 1);
    }
     
    bool check()
    {
        map<int, int> mp;
        for(int i = 1; i <= 9; ++i) {
            int f = 0;
            for(int j = 1; j <= 9; ++j) {
                mp[g[i][j]]++;
                if(mp[g[i][j]] > 1) {f = 1; break;}
            }
            if(!f) return 0;
            mp.clear();
        }
        for(int i = 1; i <= 9; ++i) {
            int f = 0;
            for(int j = 1; j <= 9; ++j) {
                mp[g[j][i]]++;
                if(mp[g[j][i]] > 1) {f = 1; break;}
            }
            if(!f) return 0;
            mp.clear();
        }
        for(int k = 1; k <= 3; ++k) {
            for(int l = 1; l <= 3; ++l) {
                int f = 0;
                for(int i = (k - 1) * 3 + 1; i <= k * 3; ++i) {
                    for(int j = (l - 1) * 3 + 1; j <= l * 3; ++j) {
                        mp[g[i][j]]++;
                        if(mp[g[i][j]] > 1) {f = 1; break;}
                    }
                    if(f) break;
                }
                mp.clear();
                if(!f) return 0;
            }
        }
        return 1;
    }
     
    void dfs(int step)
    {
        //cout<<step<<endl;
        if(f) return;
        if(step > 9) {
            cnt++;
            if(check()) f = 1, out();
            else return;
        }
        for(int i = 3 * (dx[step] - 1) + 1; i <= 3 * dx[step]; ++i) {
            if(row[i]) continue;
            for(int j = 3 * (dy[step] - 1) + 1; j <= 3 * dy[step]; ++j) {
                if(col[j]) continue;
                for(int k = 1; k <= 9; ++k) {
                    if(g[i][j] == k + '0') continue;
                    if(vis[i][j]) continue;
                    int temp = g[i][j];
                    vis[i][j] = 1;
                    g[i][j] = k + '0';
                    row[i] = 1, col[j] = 1;
                    dfs(step + 1);
                    if(f) return;
                    g[i][j] = temp;
                    vis[i][j] = 0;
                    row[i] = 0, col[j] = 0;
                }
            }
        }
    }
    int main()
    {
        t = read();
        while(t--) {
            memset(vis, 0, sizeof(vis));
            memset(col, 0, sizeof(col));
            memset(row, 0, sizeof(row));
            f = 0;
            for(int i = 1; i <= 9; ++i)
                scanf("%s", g[i] + 1);
            dfs(1);
            //cout<<cnt<<endl;
        }
        return 0;
    }
    /*
    154873296
    386592714
    729641835
    863725149
    975314628
    412968357
    631457982
    598236471
    247189563
    */
    
    /*replace 3 with 1*/
    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int, int>
    #define arrayDebug(a, l, r) for(int i = l; i <= r; ++i) printf("%d%c", a[i], " 
    "[i == r])
    typedef long long LL;
    typedef unsigned long long ULL;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int inf = 0x3f3f3f3f;
    const int DX[] = {0, -1, 0, 1, 0, -1, -1, 1, 1};
    const int DY[] = {0, 0, 1, 0, -1, -1, 1, 1, -1};
    const int MOD = 1e9 + 7;
    const int N = 4e2 + 7;
    const double PI = acos(-1);
    const double EPS = 1e-6;
    using namespace std;
    int t, n;
    char g[20][20];
     
    inline int read()
    {
        char c = getchar();
        int ans = 0, f = 1;
        while(!isdigit(c)) {if(c == '-') f = -1; c = getchar();}
        while(isdigit(c)) {ans = ans * 10 + c - '0'; c = getchar();}
        return ans * f;
    }
     
    int main()
    {
        t = read();
        while(t--) {
            for(int i = 1; i <= 9; ++i)
                scanf("%s", g[i] + 1);
            for(int i = 1; i <= 9; ++i)
                for(int j = 1; j <= 9; ++j)
                    if(g[i][j] == '3') g[i][j] = '1';
            for(int i = 1; i <= 9; ++i)
                puts(g[i] + 1);
        }
        return 0;
    }
    
  • 相关阅读:
    perl 添加主机
    java将阿拉伯数字转换为中文数字
    使用EL调用Java方法
    Perl 检索zabbix 主机
    perl和curl 模拟post 发送json数据
    Caused by: java.lang.ClassNotFoundException: org.eclipse.jetty.continuation.ContinuationThrowable
    3.4. JVM Agent
    perl JMX::Jmx4Perl::Manual 说明
    perl 安装 JMX::Jmx4Perl 需要版本5.10.1
    Chapter 2.Jolokia Architecture 结构:
  • 原文地址:https://www.cnblogs.com/ChenyangXu/p/12702355.html
Copyright © 2020-2023  润新知