• 朴素贝叶斯算法——实现新闻分类(Sklearn实现)


    1、朴素贝叶斯实现新闻分类的步骤

    (1)提供文本文件,即数据集下载

    (2)准备数据

             将数据集划分为训练集和测试集;使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化

             停用词文本stopwords_cn.txt下载

             jieba模块学习:https://github.com/fxsjy/jieba ;    https://www.oschina.net/p/jieba

    (3)分析数据:使用matplotlib模块分析

    (4)训练算法:使用sklearn.naive_bayes 的MultinomialNB进行训练

             Sklearn构建朴素贝叶斯分类器官方文档学习

             在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。

            其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。

    (5)测试算法:使用测试集对贝叶斯分类器进行测试

     2、代码实现

    # -*- coding: UTF-8 -*-
    import os
    import random
    import jieba
    from sklearn.naive_bayes import MultinomialNB
    import matplotlib.pyplot as plt
     
    """
    函数说明:中文文本处理
    Parameters:
        folder_path - 文本存放的路径
        test_size - 测试集占比,默认占所有数据集的百分之20
    Returns:
        all_words_list - 按词频降序排序的训练集列表
        train_data_list - 训练集列表
        test_data_list - 测试集列表
        train_class_list - 训练集标签列表
        test_class_list - 测试集标签列表
    """
    def TextProcessing(folder_path, test_size=0.2):
        folder_list = os.listdir(folder_path)  # 查看folder_path下的文件
        data_list = []  # 数据集数据
        class_list = []  # 数据集类别
        # 遍历每个子文件夹
        for folder in folder_list:
            new_folder_path = os.path.join(folder_path, folder)  # 根据子文件夹,生成新的路径
            files = os.listdir(new_folder_path)  # 存放子文件夹下的txt文件的列表
            j = 1
            # 遍历每个txt文件
            for file in files:
                if j > 100:  # 每类txt样本数最多100个
                    break
                with open(os.path.join(new_folder_path, file), 'r', encoding='utf-8') as f:  # 打开txt文件
                    raw = f.read()
     
                word_cut = jieba.cut(raw, cut_all=False)  # 精简模式,返回一个可迭代的generator
                word_list = list(word_cut)  # generator转换为list
     
                data_list.append(word_list)  # 添加数据集数据
                class_list.append(folder)  # 添加数据集类别
                j += 1
        data_class_list = list(zip(data_list, class_list))  # zip压缩合并,将数据与标签对应压缩
        random.shuffle(data_class_list)  # 将data_class_list乱序
        index = int(len(data_class_list) * test_size) + 1  # 训练集和测试集切分的索引值
        train_list = data_class_list[index:]  # 训练集
        test_list = data_class_list[:index]  # 测试集
        train_data_list, train_class_list = zip(*train_list)  # 训练集解压缩
        test_data_list, test_class_list = zip(*test_list)  # 测试集解压缩
     
        all_words_dict = {}  # 统计训练集词频
        for word_list in train_data_list:
            for word in word_list:
                if word in all_words_dict.keys():
                    all_words_dict[word] += 1
                else:
                    all_words_dict[word] = 1
     
        # 根据键的值倒序排序
        all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f: f[1], reverse=True)
        all_words_list, all_words_nums = zip(*all_words_tuple_list)  # 解压缩
        all_words_list = list(all_words_list)  # 转换成列表
        return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list
     
     
    """
    函数说明:读取文件里的内容,并去重
    Parameters:
        words_file - 文件路径
    Returns:
        words_set - 读取的内容的set集合
    """
    def MakeWordsSet(words_file):
        words_set = set()  # 创建set集合
        with open(words_file, 'r', encoding='utf-8') as f:  # 打开文件
            for line in f.readlines():  # 一行一行读取
                word = line.strip()  # 去回车
                if len(word) > 0:  # 有文本,则添加到words_set中
                    words_set.add(word)
        return words_set  # 返回处理结果
     
     
    """
    函数说明:文本特征选取
    Parameters:
        all_words_list - 训练集所有文本列表
        deleteN - 删除词频最高的deleteN个词
        stopwords_set - 指定的结束语
    Returns:
        feature_words - 特征集
    """
    def words_dict(all_words_list, deleteN, stopwords_set=set()):
        feature_words = []  # 特征列表
        n = 1
        for t in range(deleteN, len(all_words_list), 1):
            if n > 1000:  # feature_words的维度为1000
                break
                # 如果这个词不是数字,并且不是指定的结束语,并且单词长度大于1小于5,那么这个词就可以作为特征词
            if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1 < len(all_words_list[t]) < 5:
                feature_words.append(all_words_list[t])
            n += 1
        return feature_words
     
     
    """
    函数说明:根据feature_words将文本向量化
    Parameters:
        train_data_list - 训练集
        test_data_list - 测试集
        feature_words - 特征集
    Returns:
        train_feature_list - 训练集向量化列表
        test_feature_list - 测试集向量化列表
    """
    def TextFeatures(train_data_list, test_data_list, feature_words):
        def text_features(text, feature_words):  # 出现在特征集中,则置1
            text_words = set(text)
            features = [1 if word in text_words else 0 for word in feature_words]
            return features
     
        train_feature_list = [text_features(text, feature_words) for text in train_data_list]
        test_feature_list = [text_features(text, feature_words) for text in test_data_list]
        return train_feature_list, test_feature_list  # 返回结果
     
     
    """
    函数说明:新闻分类器
    Parameters:
        train_feature_list - 训练集向量化的特征文本
        test_feature_list - 测试集向量化的特征文本
        train_class_list - 训练集分类标签
        test_class_list - 测试集分类标签
    Returns:
        test_accuracy - 分类器精度
    """
    def TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list):
        classifier = MultinomialNB().fit(train_feature_list, train_class_list)
        test_accuracy = classifier.score(test_feature_list, test_class_list)
        return test_accuracy
     
     
    if __name__ == '__main__':
        # 文本预处理
        folder_path = './SogouC/Sample'  # 训练集存放地址
        all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path,test_size=0.2)
        # 生成stopwords_set
        stopwords_file = './stopwords_cn.txt'
        stopwords_set = MakeWordsSet(stopwords_file)
     
        test_accuracy_list = []
        """
        deleteNs = range(0, 1000, 20)  # 0 20 40 60 ... 980
        for deleteN in deleteNs:
            feature_words = words_dict(all_words_list, deleteN, stopwords_set)
            train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words)
            test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list)
            test_accuracy_list.append(test_accuracy)
        plt.figure()
        plt.plot(deleteNs, test_accuracy_list)
        plt.title('Relationship of deleteNs and test_accuracy')
        plt.xlabel('deleteNs')
        plt.ylabel('test_accuracy')
        plt.show()
        """
        feature_words = words_dict(all_words_list, 450, stopwords_set)
        train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words)
        test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list)
        test_accuracy_list.append(test_accuracy)
        ave = lambda c: sum(c) / len(c)
        print(ave(test_accuracy_list))
    

      结果为:

  • 相关阅读:
    实验四 代码审查
    结对编程——阶段二
    实验二—结对编程第一环节
    实验一 GIT 代码版本管理
    实验五 单元测试
    实验四 代码评审
    实验三 UML建模工具的安装与使用
    实验二 结对编程第二阶段
    实验二 结对编程——第一阶段
    软件工程 实验一 GIT代码版本管理
  • 原文地址:https://www.cnblogs.com/asialee/p/9417659.html
Copyright © 2020-2023  润新知