1、朴素贝叶斯实现新闻分类的步骤
(1)提供文本文件,即数据集下载
(2)准备数据
将数据集划分为训练集和测试集;使用jieba模块进行分词,词频统计,停用词过滤,文本特征提取,将文本数据向量化
停用词文本stopwords_cn.txt下载
jieba模块学习:https://github.com/fxsjy/jieba ; https://www.oschina.net/p/jieba
(3)分析数据:使用matplotlib模块分析
(4)训练算法:使用sklearn.naive_bayes 的MultinomialNB进行训练
在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。
其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。
(5)测试算法:使用测试集对贝叶斯分类器进行测试
2、代码实现
# -*- coding: UTF-8 -*- import os import random import jieba from sklearn.naive_bayes import MultinomialNB import matplotlib.pyplot as plt """ 函数说明:中文文本处理 Parameters: folder_path - 文本存放的路径 test_size - 测试集占比,默认占所有数据集的百分之20 Returns: all_words_list - 按词频降序排序的训练集列表 train_data_list - 训练集列表 test_data_list - 测试集列表 train_class_list - 训练集标签列表 test_class_list - 测试集标签列表 """ def TextProcessing(folder_path, test_size=0.2): folder_list = os.listdir(folder_path) # 查看folder_path下的文件 data_list = [] # 数据集数据 class_list = [] # 数据集类别 # 遍历每个子文件夹 for folder in folder_list: new_folder_path = os.path.join(folder_path, folder) # 根据子文件夹,生成新的路径 files = os.listdir(new_folder_path) # 存放子文件夹下的txt文件的列表 j = 1 # 遍历每个txt文件 for file in files: if j > 100: # 每类txt样本数最多100个 break with open(os.path.join(new_folder_path, file), 'r', encoding='utf-8') as f: # 打开txt文件 raw = f.read() word_cut = jieba.cut(raw, cut_all=False) # 精简模式,返回一个可迭代的generator word_list = list(word_cut) # generator转换为list data_list.append(word_list) # 添加数据集数据 class_list.append(folder) # 添加数据集类别 j += 1 data_class_list = list(zip(data_list, class_list)) # zip压缩合并,将数据与标签对应压缩 random.shuffle(data_class_list) # 将data_class_list乱序 index = int(len(data_class_list) * test_size) + 1 # 训练集和测试集切分的索引值 train_list = data_class_list[index:] # 训练集 test_list = data_class_list[:index] # 测试集 train_data_list, train_class_list = zip(*train_list) # 训练集解压缩 test_data_list, test_class_list = zip(*test_list) # 测试集解压缩 all_words_dict = {} # 统计训练集词频 for word_list in train_data_list: for word in word_list: if word in all_words_dict.keys(): all_words_dict[word] += 1 else: all_words_dict[word] = 1 # 根据键的值倒序排序 all_words_tuple_list = sorted(all_words_dict.items(), key=lambda f: f[1], reverse=True) all_words_list, all_words_nums = zip(*all_words_tuple_list) # 解压缩 all_words_list = list(all_words_list) # 转换成列表 return all_words_list, train_data_list, test_data_list, train_class_list, test_class_list """ 函数说明:读取文件里的内容,并去重 Parameters: words_file - 文件路径 Returns: words_set - 读取的内容的set集合 """ def MakeWordsSet(words_file): words_set = set() # 创建set集合 with open(words_file, 'r', encoding='utf-8') as f: # 打开文件 for line in f.readlines(): # 一行一行读取 word = line.strip() # 去回车 if len(word) > 0: # 有文本,则添加到words_set中 words_set.add(word) return words_set # 返回处理结果 """ 函数说明:文本特征选取 Parameters: all_words_list - 训练集所有文本列表 deleteN - 删除词频最高的deleteN个词 stopwords_set - 指定的结束语 Returns: feature_words - 特征集 """ def words_dict(all_words_list, deleteN, stopwords_set=set()): feature_words = [] # 特征列表 n = 1 for t in range(deleteN, len(all_words_list), 1): if n > 1000: # feature_words的维度为1000 break # 如果这个词不是数字,并且不是指定的结束语,并且单词长度大于1小于5,那么这个词就可以作为特征词 if not all_words_list[t].isdigit() and all_words_list[t] not in stopwords_set and 1 < len(all_words_list[t]) < 5: feature_words.append(all_words_list[t]) n += 1 return feature_words """ 函数说明:根据feature_words将文本向量化 Parameters: train_data_list - 训练集 test_data_list - 测试集 feature_words - 特征集 Returns: train_feature_list - 训练集向量化列表 test_feature_list - 测试集向量化列表 """ def TextFeatures(train_data_list, test_data_list, feature_words): def text_features(text, feature_words): # 出现在特征集中,则置1 text_words = set(text) features = [1 if word in text_words else 0 for word in feature_words] return features train_feature_list = [text_features(text, feature_words) for text in train_data_list] test_feature_list = [text_features(text, feature_words) for text in test_data_list] return train_feature_list, test_feature_list # 返回结果 """ 函数说明:新闻分类器 Parameters: train_feature_list - 训练集向量化的特征文本 test_feature_list - 测试集向量化的特征文本 train_class_list - 训练集分类标签 test_class_list - 测试集分类标签 Returns: test_accuracy - 分类器精度 """ def TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list): classifier = MultinomialNB().fit(train_feature_list, train_class_list) test_accuracy = classifier.score(test_feature_list, test_class_list) return test_accuracy if __name__ == '__main__': # 文本预处理 folder_path = './SogouC/Sample' # 训练集存放地址 all_words_list, train_data_list, test_data_list, train_class_list, test_class_list = TextProcessing(folder_path,test_size=0.2) # 生成stopwords_set stopwords_file = './stopwords_cn.txt' stopwords_set = MakeWordsSet(stopwords_file) test_accuracy_list = [] """ deleteNs = range(0, 1000, 20) # 0 20 40 60 ... 980 for deleteN in deleteNs: feature_words = words_dict(all_words_list, deleteN, stopwords_set) train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words) test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list) test_accuracy_list.append(test_accuracy) plt.figure() plt.plot(deleteNs, test_accuracy_list) plt.title('Relationship of deleteNs and test_accuracy') plt.xlabel('deleteNs') plt.ylabel('test_accuracy') plt.show() """ feature_words = words_dict(all_words_list, 450, stopwords_set) train_feature_list, test_feature_list = TextFeatures(train_data_list, test_data_list, feature_words) test_accuracy = TextClassifier(train_feature_list, test_feature_list, train_class_list, test_class_list) test_accuracy_list.append(test_accuracy) ave = lambda c: sum(c) / len(c) print(ave(test_accuracy_list))
结果为: