• 数据运营经验分享:通过精细化运营驱动产品增长


    数据运营经验分享:通过精细化运营驱动产品增长

    一、什么是运营?

    围绕产品进行的推广、促活、拉新等一切干预手段都属于运营。用现在的话说就是“帮产品搞事情”。

    运营“搞事情”的目的有2点:

    让产品活的更久:活的久是要延长产品的生命周期,延长用户的生命的周期,更受用户喜欢。

    让产品活的更好:活的更好就是通过广告、用户主动付费等方式获得收入,带来商业价值。

    二、什么是精细化运营?

    所谓的精细化运营是一种建立在数据基础上的思维方式——用较少的成本获得较好的效果。

    1. 何为数据采集?

    运营工作是建立在对用户的了解上进行的,当用户达到一定规模,就需要对不同类型的用户分群,针对某一特征或某几个特征组合的人群有针对性的运营,数据采集是第一步。

    以健身App为例,用户进入App后,部分用户会根据自身锻炼的目标选择训练课程(比如基础训练、腰背训练、练出马甲线、人鱼线等),完成训练后就会离开;另一部分用户完成训练项目后,会进入社区查看相关内容(比如查看需要几个周期可以初现马甲线之类),增加锻炼的具体认知。

    这部分用户在完成训练项目、浏览社区内容后,很可能会在社区分享自己的心得、拍照打卡,或者向其他人提问。可以看到,这些用户的行为是随着使用深度递增的。通过对用户触发的每一项行为事件数据以及属性数据(包括性别、身高、体重、年龄等信息),为下一步挖掘出用户背后的行为原因、制定运营策略提供科学依据。当然还有一部分用户下载APP,打开后没有进行锻炼,或者锻炼中途离开,这些用户同样需要进一步“运营”。

    2. 何为数据挖掘?

    有了行为数据后我们就要开始分析:进入App后,有多少用户半途而废,没有完成训练就中途离开?有多少用户完成训练项目后就离开,这部分用户的次日留存和七日留存率是多少?会进入社区查看社区内容或者查看官方推荐内容的新用户留存率是多少?有多少用户完成训练项目,并且在社区发布了内容?什么样的用户在社区停留时间比较长?

    我们可以根据需求,把以上数据按照合理的逻辑组合在一起,构成了一个个用户群(根据需求进行自定义用户分群):


    1. 新手用户:进入App后,未完成一次完整的训练;
    2. 留存用户:进入App后,一周完成三次及以上训练;
    3. 核心用户:进入App后,一周完成三次及以上训练,或在社区参与三次及以上互动;


    然后将属性特征和行为特征结合起来分析,属性特征包括注册时录入的性别、身高、体重、年龄等信息;行为数据包括选择哪些课程、针对哪些身体部位的强化训练、什么时间段锻炼、锻炼时长、难度级别、中间是否需要暂停休息等等。这些特征的背后实际上对应的是清晰的用户画像,比如一线城市的健身达人、有毅力的甩脂小妹、简单运动一下的上班族等鲜活的人物画像,通过用户分群可以自定义不同的群组,关注不同特征的用户群的行为表现,挖掘出哪类人群健身频次相对于高于其他用户群。

    3. 如何做数据决策?

    根据以上用户群体特征,针对性的制定运营目标去设计活动方案并执行,最后收集数据检验运营效果和方案的准确性,作为下次运营的参考经验。比如:对新手用户来说,我们尝试根据用户属性信息组织更合适的训练课程内容推荐给用户(比如根据身高体重换算出BMI指数,再结合年龄推荐适当强度的训练课程,避免难度过大造成放弃或难度没有挑战不感兴趣);对于留存用户,我们可以尝试推荐相关的社区内容(比如针对选择锻炼马甲线的用户推荐“速成马甲线除了高强度训练还应该这样吃”之类的内容),引导用户进入社区,并延长在APP的时间,增强忠诚度;对于核心用户,我们可以定期组织线下健身达人活动,邀约这部分用户参与,更好的保持他们对社区的热度。

    4. 3个合适:在合适的时候对合适的人做合适的事

    什么才是合适的时候?怎么找到合适的人?什么事是合适的?首先我们要明确目标,我们现在要提升什么数据?比如,当我们发现新用户流失率很高,那么我们需要分析:打开App后用户是否点开了健身训练?未完成训练就中途离开的人占比是否比较高?如果是,要去追查新手用户打开的教学视频难度系数是不是比较大,不适合新手用户,从而导致严重流失?如果是,那么可以筛选出这部分用户进行“召回”,为这些新手用户推荐难度系数较低的健身视频,然后追踪这部分用户在一段时间内的留存率是否有明显的提升。

    数据分析是一个发现问题、提出假设、印证猜想、不断优化的过程。合适的方法是要经过不断的实验去验证,验证的过程也是在校验数据,从而优化运营策略,提升用户新增和留存。

    三、运营的灵魂是对用户的理解

    回到最初的观点,运营的灵魂是对用户的理解,在理性的分析中感性的理解用户。当我们能够把用户群分的越精准,说明我们对用户的理解越深入。我的运营目标就越清晰,运营方案的效果就会越好。数据本身是冷冰冰的,但是数据背后的用户是形形色色的人,分析数据实际就是在分析人背后的行为,通过对数据背后的行为进行洞察,从而更好的制定运营策略。

    四、深入理解用户

    1、用户行为路径分析

    指的是用户在进入产品以后的行为轨迹,用户用了哪些功能模块?用户使用的顺序是什么?通过分析用户行为路径,验证用户的使用是否和当初设计产品的逻辑是一致的。如果和产品设计逻辑偏差很大,就需要思考为什么?是我们设计的逻辑有问题?还是其他方面出现了问题?

    2、精细化用户分群

    根据用户行为的特征将其按需拆分成不同属性的用户群,例如:做过A事件的人拆分成一个用户群,做过B事件的拆分成另一个群,看群体用户画像有什么区别,看他的留存和回访有什么区别。

    3、单体用户行为跟踪

    人是分析的最基本元素,需要清楚的知道每一个用户所处生命周期、活跃情况、环境信息等。有了用户群的画像以后,通过单体用户行为跟踪,我们就可以进一步追踪到个人身上,通过对个体用户行为的跟踪,可以查看用户具体是如何使用产品的。

    前面举了健身应用的例子,接下来再以直播平台为例,盈利点是通过用户充值给主播送礼物,平台可以得到一定比例的分成。每天都有大量的人看直播,从打开直播软件,到浏览房间、进入房间、发道具、与主播互动,那么每天都会有一定比例的人充值,通过埋点方式记录下这些关键行为,然后根据诸葛io用户行为路径,分析这些行为的流向,了解用户的来龙去脉。找到用户最有可能充值的行为,通过产品上以及运营策略上的引导,让更多的用户充值。

    通过精细化用户分群,洞察不同类型的客户:比如从来不充值的用户,喜欢进美女主播房间的客户等,将用户关键行为特点进行精细化分群,进而分析群体画像、留存、转化等指标。利用精细化用户分群,去挖掘直播产品的用户价值点,也是直播产品的数据分析与应用里一个很核心的基础,通过对用户的分群,对行为进行对比,查看用户留存与转化,分析出能够提升用户价值的地方;通过查看单体用户行为,从而可以区分出二者用户特点以及流失用户的使用情况等。

    通过三大利器的组合使用,从而可以制定精细化运营策略,针对产品的不同用户可以实施不同的运营策略,从而提升用户新增以及用户留存等。

    数据驱动,重要的不仅仅是数据驱动运营的的理念,更重要的是会使用一款或多款数据分析工具不断实践、活学活用,从而探索出最契合受众用户的运营之道。

  • 相关阅读:
    vue3 结合 echarts ,图表初始不渲染,当代码改变后才会渲染
    vue3结合three.js 展示3d模型时, 从a路由跳转到b路由,浏览器后退到a路由时,模型加载完后一片空白,并且自定义的CSS2DObject 标签 重复出现
    win7下安装nodejs16.4.0
    数据挖掘模型学习二分类
    真是人生无常,大肠包小肠
    sql优化
    第一个SpringMVC小案例
    (CVE202223131)ZABBIX绕过 SAML SSO 身份验证
    python openpyxl打开xlsx文件异常,UserWarning: File contains an invalid specification for Sheet1. This will be removed
    使用frp实现内网穿透
  • 原文地址:https://www.cnblogs.com/amengduo/p/9586245.html
Copyright © 2020-2023  润新知