题意:有棵树每个点有个颜色(不超过10种),每个节点不超过20个儿子,问你每两点之间的颜色序列不同的有多少种
题解:先建出树,对于每个叶子节点,bfs一遍建在sam上,每次保留当前点在sam上的位置,拓展时用父亲节点在sam上的位置当成last即可.然后统计sam本质不同的字符串有多少个
注:dfs建树复杂度是错的,但是也能过这题
/**************************************************************
Problem: 3926
User: walfy
Language: C++
Result: Accepted
Time:3612 ms
Memory:270836 kb
****************************************************************/
//#pragma GCC optimize(2)
//#pragma GCC optimize(3)
//#pragma GCC optimize(4)
//#pragma GCC optimize("unroll-loops")
//#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
#include<bits/stdc++.h>
#define fi first
#define se second
#define db double
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define vi vector<int>
#define mod 1000000007
#define ld long double
//#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pll pair<ll,ll>
#define pil pair<int,ll>
#define pli pair<ll,int>
#define pii pair<int,int>
#define ull unsigned long long
//#define base 1000000000000000000
#define fin freopen("a.txt","r",stdin)
#define fout freopen("a.txt","w",stdout)
#define fio ios::sync_with_stdio(false);cin.tie(0)
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=ans*a%c;a=a*a%c,b>>=1;}return ans;}
using namespace std;
const ull ba=233;
const db eps=1e-5;
const ll INF=0x3f3f3f3f3f3f3f3f;
const int N=100000+10,maxn=1000000+10,inf=0x3f3f3f3f;
struct SAM{
int last,cnt;
int ch[N*40][15],fa[N*40],l[N*40];
int ins(int y,int x)
{
last=y;
int p=last,np=++cnt;last=np;l[np]=l[p]+1;
for(;p&&!ch[p][x];p=fa[p])ch[p][x]=np;
if(!p)fa[np]=1;
else
{
int q=ch[p][x];
if(l[q]==l[p]+1)fa[np]=q;
else
{
int nq=++cnt;l[nq]=l[p]+1;
memcpy(ch[nq],ch[q],sizeof ch[q]);
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;ch[p][x]==q;p=fa[p])ch[p][x]=nq;
}
}
return last;
}
void build()
{
cnt=last=1;
}
ll cal()
{
ll ans=0;
for(int i=1;i<=cnt;i++)ans+=l[i]-l[fa[i]];
return ans;
}
}sam;
int a[N],d[N];
bool vis[N];
struct Tire{
vector<int>v[N];
int id[N];
void ins(int a,int b){v[a].pb(b);v[b].pb(a);}
void bfs(int u)
{
memset(vis,0,sizeof vis);
queue<int>q;q.push(u);vis[u]=1;
id[u]=sam.ins(1,a[u]);
while(!q.empty())
{
u=q.front();q.pop();
for(int i=0;i<v[u].size();i++)if(!vis[v[u][i]])
{
int x=v[u][i];
vis[x]=1;q.push(x);
id[x]=sam.ins(id[u],a[x]);
}
}
}
}t;
int main()
{
int n,c;scanf("%d%d",&n,&c);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<n;i++)
{
int a,b;scanf("%d%d",&a,&b);
t.ins(a,b);d[a]++,d[b]++;
}
sam.build();
for(int i=1;i<=n;i++)if(d[i]==1)t.bfs(i);
printf("%lld
",sam.cal());
return 0;
}
/********************
********************/