• UVA 1451 Average


    A DNA sequence consists of four letters, A, C, G, and T. The GC-ratio of a DNA sequence is the
    number of Cs and Gs of the sequence divided by the length of the sequence. GC-ratio is important
    in gene nding because DNA sequences with relatively high GC-ratios might be good candidates for
    the starting parts of genes. Given a very long DNA sequence, researchers are usually interested in
    locating a subsequence whose GC-ratio is maximum over all subsequences of the sequence. Since short
    subsequences with high GC-ratios are sometimes meaningless in gene nding, a length lower bound is
    given to ensure that a long subsequence with high GC-ratio could be found. If, in a DNA sequence,
    a 0 is assigned to every A and T and a 1 to every C and G, the DNA sequence is transformed into a
    binary sequence of the same length. GC-ratios in the DNA sequence are now equivalent to averages in
    the binary sequence.

    题目大意:给出一个01序列,求长度至少为L的子序列,使得平均值最大
    解题报告:
    比较简单,但是花了许久时间,还是太渣.
    开始以为是简单贪心,长度固定为L即可,发现这个单调性只有排序后才有QWQ,所以拍WA后改写斜率优化DP:我们要求的是((sum[i]-sum[j])/(i-j+1))最大值,明显对应平面上的斜率,所以直接做就好,注意要把0加进去,调了很久

    #include <algorithm>
    #include <iostream>
    #include <cstdlib>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define RG register
    #define il inline
    #define iter iterator
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    using namespace std;
    const int N=1e5+5;const double eps=1e-6;
    int a[N],n,m,sum[N],q[N];char s[N];
    int fy(int i,int j){
    	return sum[i]-sum[j];
    }
    int fx(int i,int j){
    	return i-j;
    }
    void work()
    {
    	scanf("%d%d",&n,&m);
     	scanf("%s",s+1);
    	for(int i=1;i<=n;i++){
    		a[i]=s[i]-'0',sum[i]=sum[i-1]+a[i];
    		if(m==1 && a[i]){
    			printf("%d %d
    ",i,i);
    			return ;
    		}
    	}
    	if(m==1){puts("1 1");return ;}
    	int l=1,r=0,j,k,L=0,R=m;int tot;
    	for(int i=m;i<=n;i++){
    		while(r-l>=1){
    			j=q[r];k=q[r-1];
    			if(fy(i-m,j)*fx(i-m,k)<=fy(i-m,k)*fx(i-m,j))r--;
    			else break;
    		}
    		q[++r]=i-m;
    		while(r-l>=1){
    			j=q[l+1];k=q[l];
    			if(fy(i,j)*fx(i,k)>=fy(i,k)*fx(i,j))l++;
    			else break;
    		}
    		tot=fy(i,q[l])*fx(R,L)-fy(R,L)*fx(i,q[l]);
    		if(tot>0 || (tot==0 && i-q[l]<R-L)){
    			L=q[l];R=i;
    		}
    	}
    	printf("%d %d
    ",L+1,R);
    }
    
    int main()
    {
    	int T;cin>>T;
    	while(T--)work();
    	return 0;
    }
    
  • 相关阅读:
    第十三周课程总结
    第十二周
    第十一周课程总结
    第十周课程总结
    第九周课程总结&实验报告(七)
    第八周课程总结&实验报告(六)
    第七周课程总结&实验报告(五)
    第六周&java实验报告四
    期末课程总结与个人总结
    第十四周课程总结
  • 原文地址:https://www.cnblogs.com/Yuzao/p/7497134.html
Copyright © 2020-2023  润新知