题目
Source
http://www.spoj.com/problems/DQUERY/en/
Description
Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) (1 ≤ i ≤ j ≤ n). For each d-query (i, j), you have to return the number of distinct elements in the subsequence ai, ai+1, ..., aj.
Input
Line 1: n (1 ≤ n ≤ 30000).
Line 2: n numbers a1, a2, ..., an (1 ≤ ai ≤ 106).
Line 3: q (1 ≤ q ≤ 200000), the number of d-queries.
In the next q lines, each line contains 2 numbers i, j representing a d-query (1 ≤ i ≤ j ≤ n).
Output
For each d-query (i, j), print the number of distinct elements in the subsequence ai, ai+1, ..., aj in a single line.
Sample Input
5
1 1 2 1 3
3
1 5
2 4
3 5
Sample Output
3
2
3
分析
题目说给一个序列,多次询问一个区间内不同数的个数。
离线做法很经典吧,HDU3333。
主席树做法。。其实很容易往建权值线段树那边想,不过好像行不通。。
其实做法也和离线是一样的,线段树维护的是各个位置是否要存在数,记录各个数出现最右边的位置,删除之前的位置、更新当前位置,相当于把各个数字一直往右靠。
于是这样就从左往右保存了多个版本的线段树信息,查询时就拿出右端点对应版本的线段树进行区间查询。
代码
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define MAXN 33333 int x,y,root[MAXN],tree[MAXN*20],lch[MAXN*20],rch[MAXN*20],N; void update(int i,int j,int a,int &b){ b=++N; if(i==j){ tree[b]=tree[a]+y; return; } int mid=i+j>>1; lch[b]=lch[a]; rch[b]=rch[a]; if(x<=mid) update(i,mid,lch[a],lch[b]); else update(mid+1,j,rch[a],rch[b]); tree[b]=tree[lch[b]]+tree[rch[b]]; } int query(int i,int j,int a){ if(x<=i && j<=y){ return tree[a]; } int mid=i+j>>1,ret=0; if(x<=mid) ret+=query(i,mid,lch[a]); if(y>mid) ret+=query(mid+1,j,rch[a]); return ret; } int a[MAXN],last[1111111]; int main(){ int n,q; scanf("%d",&n); for(int i=1; i<=n; ++i){ scanf("%d",&a[i]); } for(int i=1; i<=n; ++i){ if(last[a[i]]){ int tmp; x=last[a[i]]; y=-1; update(1,n,root[i-1],tmp); x=i; y=1; update(1,n,tmp,root[i]); }else{ x=i; y=1; update(1,n,root[i-1],root[i]); } last[a[i]]=i; } scanf("%d",&q); while(q--){ scanf("%d%d",&x,&y); printf("%d ",query(1,n,root[y])); } return 0; }