• PAT-1021 Deepest Root (25 分) 并查集判断成环和联通+求树的深度


    A graph which is connected and acyclic can be considered a tree. The height of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (≤104) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes' numbers.

    Output Specification:

    For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components where K is the number of connected components in the graph.

    Sample Input 1:

    5
    1 2
    1 3
    1 4
    2 5
    

    Sample Output 1:

    3
    4
    5
    

    Sample Input 2:

    5
    1 3
    1 4
    2 5
    3 4
    

    Sample Output 2:

    Error: 2 components
    

    交了一发暴力,居然过了,关键就是这个求树的深度,这题的主要坑点在于,如果不是一颗树要输出那个信息,如果成环了但是只有一个连通块,要输出

    Error: 1 components

    所以注意判断逻辑

    int dfs(int x)
    {
        //de(x);
        vis[x]=1;
        int ma=0;
        for(int i=0;i<(int)G[x].size();i++){
            int v=G[x][i];
           if(vis[v])continue;
            ma=max(ma,dfs(G[x][i]));
        }
        return ma+1;
    }
    
    #include <iostream>
    #include<bits/stdc++.h>
    #define each(a,b,c) for(int a=b;a<=c;a++)
    #define de(x) cout<<#x<<" "<<(x)<<endl
    using namespace std;
    
    const int maxn=1e4+5;
    int father[maxn];   //  储存i的father父节点
    
    void makeSet(int n) {
        for (int i = 1; i <=n; i++)
            father[i] = i;
    }
    
    int findRoot(int x) {   //  迭代找根节点
        int root = x; // 根节点
        while (root != father[root]) { // 寻找根节点
            root = father[root];
        }
        while (x != root) {
            int tmp = father[x];
            father[x] = root; // 根节点赋值
            x = tmp;
        }
        return root;
    }
    
    void Union(int x, int y) {  //  将x所在的集合和y所在的集合整合起来形成一个集合。
        int a, b;
        a = findRoot(x);
        b = findRoot(y);
        father[a] = b;  // y连在x的根节点上   或father[b] = a为x连在y的根节点上;
    }
    vector<int>G[maxn];
    /*
    5
    1 2
    1 3
    1 4
    2 5
    */
    int maxx;
    int depth[maxn];
    int vis[maxn];
    int dfs(int x)
    {
        //de(x);
        vis[x]=1;
        int ma=0;
        for(int i=0;i<(int)G[x].size();i++){
            int v=G[x][i];
           if(vis[v])continue;
            ma=max(ma,dfs(G[x][i]));
        }
        return ma+1;
    }
    int main()
    {
        int n;
        cin>>n;
        makeSet(n);
        int m=n-1;
        int a,b;
        int tree_flag=true;
        while(m--)
        {
            scanf("%d%d",&a,&b);
            if(findRoot(a)!=findRoot(b)){
                Union(a,b);
            G[a].push_back(b);
            G[b].push_back(a);
            }
            else tree_flag=false;
    
        }
        //int components=0;
        set<int>s;
        for(int i=1;i<=n;i++)
        {
            //de(i);
            //de(findRoot(i));
            s.insert(findRoot(i));
        }
        //de(s.size());
        if(tree_flag==false||s.size()!=1)
        {
            printf("Error: %d components
    ",(int)s.size());
            return 0;
        }
        maxx=0;
        each(i,1,n)
        {
            memset(vis,0,sizeof(vis));
            //de(i);
            depth[i]=dfs(i);
        }
        each(i,1,n)
        {
            maxx=max(maxx,depth[i]);
        }
        each(i,1,n)
        {
            if(depth[i]==maxx)
            {
                cout<<i<<endl;
            }
        }
    
        return 0;
    }
    
    
  • 相关阅读:
    人月神话阅读笔记01
    HTML中常用meta整理
    前端开发中的SEO
    webGL学习笔记
    webGL 学习教程
    HTMl5的sessionStorage和localStorage
    Validform使用
    gulp详细入门教程
    gulp.spriteSmith使用
    gulp.spritesmith修改px为rem单位
  • 原文地址:https://www.cnblogs.com/Tony100K/p/11758035.html
Copyright © 2020-2023  润新知