• 【bzoj4499】线性函数


    题目描述

    (C)最近在学习线性函数,线性函数可以表示为:(f(x) = kx + b)

    现在小(C)面前有(n)个线性函数 (f_i(x)=k_ix+b_i),他对这(n)个线性函数执行(m)次操作。

    每次可以:
    1.(M i k b) 代表把第(i)个线性函数改为:(f_i(x)=kx+b)
    2.(Q l r x) 返回(f_r(f_{r-1}(...f_l(x))) mod 10^9+7)

    题解

    用线段树维护每一段区间的(k)(b)的值,区间合并时,假设左区间是(k_1)(b_1),右区间是(k_2)(b_2),那么合并后就是(k_2(k_1x+b_1)+b_2),即(k_1k_2)(k_2b_1+b_2)

    依次维护修改即可,详见代码。

    #include <iostream>
    #include <cstdio>
    #define ll long long
    using namespace std;
    const int mod = 1e9 + 7;
    const int N = 5e5 + 5;
    int n, m;
    ll K[N << 2], B[N << 2];
    struct node {ll k, b;}L, R, em;
    char s[5];
    inline int read()
    {
    	int x = 0, f = 1; char ch = getchar();
    	while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch = getchar();}
    	while(ch >= '0' && ch <= '9') {x = (x << 3) + (x << 1) + (ch ^ 48); ch = getchar();}
    	return x * f;
    }
    void update(int k)
    {
    	K[k] = K[k << 1] * K[k << 1 | 1] % mod;
    	B[k] = (K[k << 1 | 1] * B[k << 1] % mod + B[k << 1 | 1]) % mod;
    }
    void build(int k, int l, int r)
    {
    	if(l == r)
    	{
    		K[k] = read(); B[k] = read();
    		return;
    	}
    	int mid = (l + r) >> 1;
    	build(k << 1, l, mid);
    	build(k << 1 | 1, mid + 1, r);
    	update(k);
    }
    void change(int k, int l, int r, int x, int kk, int bb)
    {
    	if(l == r) return K[k] = kk, B[k] = bb, void();
    	int mid = (l + r) >> 1;
    	if(x <= mid) change(k << 1, l, mid, x, kk, bb);
    	else change(k << 1 | 1, mid + 1, r, x, kk, bb);
    	update(k);
    }
    node query(int k, int l, int r, int x, int y)
    {
    	if(x <= l && r <= y) return node{K[k], B[k]};
    	int mid = (l + r) >> 1; ll lk = -1, lb = -1, rk = -1, rb = -1;
    	if(x <= mid)
    	{
    		L = query(k << 1, l, mid, x, y);
    		lk = L.k; lb = L.b;
    	}
    	if(y > mid)
    	{
    		R = query(k << 1 | 1, mid + 1, r, x, y);
    		rk = R.k; rb = R.b;
    	}
    	if(lk == -1 && lb == -1) return node{rk, rb};
    	else if(rk == -1 && rb == -1) return node{lk, lb};
    	else return node{lk * rk % mod, (lb * rk % mod + rb) % mod};
    }
    int main()
    {
    	n = read(); m = read(); build(1, 1, n);
    	int l, r, x, kk, bb;
    	while(m -- > 0)
    	{
    		scanf("%s", s);
    		if(s[0] == 'M')
    		{
    			x = read(); kk = read(); bb = read();
    			change(1, 1, n, x, kk, bb);
    		}
    		else
    		{
    			l = read(); r = read(); x = read();
    			em = query(1, 1, n, l, r);
    			printf("%lld
    ", (em.k * x % mod + em.b) % mod);
    		}
    	}
    	return 0;
    }
    
  • 相关阅读:
    【Hadoop离线基础总结】Hue的简单介绍和安装部署
    【Hadoop离线基础总结】Hue与Mysql集成
    【Hadoop离线基础总结】Hue与Impala集成
    【Hadoop离线基础总结】Hue与Hive集成
    【Hadoop离线基础总结】Hue与Hadoop集成
    【Hadoop离线基础总结】impala简单介绍及安装部署
    centos7启动httpd服务失败:Job for httpd.service failed because the control process exited with error code.
    【Hadoop离线基础总结】Mac版VMware Fusion虚拟机磁盘挂载
    Azkaban无法连接网页
    【Hadoop离线基础总结】流量日志分析网站整体架构模块开发
  • 原文地址:https://www.cnblogs.com/Sunny-r/p/12698150.html
Copyright © 2020-2023  润新知