• Floyd算法


    算法简介:

    Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。

    算法过程:

    1.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。

    2.对于每一对顶点 i 和 j,看看是否存在一个顶点 k 使得从 i 到 k 再到 j 比已知的路径更短。如果是更新它。

    代码说明:

    dist[i][j] : 记录从顶点i到顶点j的最短路径长度,初始化为INF

    path[i][j] : 记录从顶点i到顶点j的最短路径所经过的顶点k,初始化为0

    时间复杂度:O(n^3);

    空间复杂度:O(n^2);

    代码:

    package Algorithm;
    
    import java.util.Scanner;
    
    public class Floyd {
        public static final int INF = 100000;
        
        public Graph initGraph() {
    
            @SuppressWarnings("resource")
            Scanner scanner = new Scanner(System.in);
            System.out.println("Please input the number of the vertex: ");
            int vertexNum = scanner.nextInt();
            System.out.println("Please input the number of the edge: ");
            int edgeNum = scanner.nextInt();
            
            Graph graph = new Graph(vertexNum, edgeNum);
            
            for(int i = 1; i <= vertexNum; i++) {
                for(int j = 1; j <= vertexNum; j++) {
                    int w = (i == j) ? 0 : INF;
                    graph.addEdge(i, j, w);
                    graph.addPath(i, j);
                }            
            }
            
            for(int i = 1; i <= edgeNum; i++) {
                System.out.println("Please input the vertexs and weight of the edge " + i);
                int v1 = scanner.nextInt();
                int v2 = scanner.nextInt();
                int weight = scanner.nextInt();
                graph.addEdge(v1, v2, weight);
            }
            return graph;
        }
        
        public void floyd(Graph graph) {
            int vertexNum = graph.getVertexNum();
            int dist[][] = graph.getDist();
            int path[][] = graph.getPath();
            for(int i = 1; i <= vertexNum; i++) {
                for(int j = 1; j <= vertexNum; j++) {
                    for(int k = 1; k <= vertexNum; k++) {
                        if(dist[i][k] + dist[k][j] < dist[i][j]) {
                            dist[i][j] = dist[i][k] + dist[k][j];
                            path[i][j] = k;
                        }
                    }
                }
            }
        }
        
        private void printPath(int i, int j, int path[][]) {
            int k = path[i][j];
            if(k == 0) return;
            printPath(i, k, path);
            System.out.print(" " + k);
            printPath(k, j, path);
        }
        
        public void showAllPath(Graph graph) {
            System.out.println("Print all path:");
            int vertexNum = graph.getVertexNum();
            int dist[][] = graph.getDist();
            int path[][] = graph.getPath();
            for(int i = 1; i <= vertexNum; i++) {
                for(int j = 1; j <= vertexNum; j++) {
                    System.out.print("From vertex " + i + " to " + j + " --- Length: "
                + dist[i][j] + " Path: " + i);
                    printPath(i, j, path);
                    System.out.println(" " + j);
                }            
            }
        }
        
        public static void main(String args[]) {
            Floyd floyd = new Floyd();
            Graph graph = floyd.initGraph();
            floyd.floyd(graph);
            floyd.showAllPath(graph);
        }
        
    }
    package Algorithm;
    
    public class Graph {
        private int vertexNum;
        private int edgeNum;
        private int[][] dist;
        private int[][] path;
        
        public Graph(int vertexNum, int edgeNum) {
            this.vertexNum = vertexNum;
            this.edgeNum = edgeNum;
            int i = vertexNum + 1;
            dist = new int[i][i];
            path = new int[i][i];
        }
        
        public void addEdge(int i, int j, int w) {
            dist[i][j] = w;
        }
        
        public void addPath(int i, int j) {
            path[i][j] = 0;
        }
        
        public int getVertexNum() {
            return vertexNum;
        }
        public void setVertexNum(int vertexNum) {
            this.vertexNum = vertexNum;
        }
        public int getEdgeNum() {
            return edgeNum;
        }
        public void setEdgeNum(int edgeNum) {
            this.edgeNum = edgeNum;
        }
    
        public int[][] getDist() {
            return dist;
        }
    
        public void setDist(int[][] dist) {
            this.dist = dist;
        }
    
        public int[][] getPath() {
            return path;
        }
    
        public void setPath(int[][] path) {
            this.path = path;
        }
     
    }
  • 相关阅读:
    ajax的post请求
    ajax的get请求
    浏览器缓存机制
    php和cookie
    php表单(2)
    php和表单(1)
    枚举for/in
    .Matrix-Beta冲刺的汇总博客
    .Matrix汇总博客
    小黄衫获得的感想
  • 原文地址:https://www.cnblogs.com/SherryIsMe/p/3484191.html
Copyright © 2020-2023  润新知