题目描述
如题,给出一个网络图,以及其源点和汇点,求出其网络最大流。
输入格式
第一行包含四个正整数 n n n, m m m, s s s, t t t,分别表示点的个数、有向边的个数、源点序号、汇点序号。
接下来M行每行包含三个正整数 ui ,vi,wi ,表示第 i 条有向边从 ui 出发,到达 vi,边权为 wi即该边最大流量为 wi)。
输出格式
一行,包含一个正整数,即为该网络的最大流。
输入输出样例
4 5 4 3
4 2 30
4 3 20
2 3 20
2 1 30
1 3 40
50
样例输入输出 1 解释
struct Edge {
int u, v;
ll cap, flow;
Edge(int _u, int _v, ll _cap, ll _flow) {
u = _u, v = _v, cap = _cap, flow = _flow;
}
};
struct ISAP {
vector<Edge> edge;
vector<int> G[maxn];
ll dis[maxn], cur[maxn];
int n, s, t;
ll p[maxn], num[maxn];
bool vis[maxn];
void init(int _n, int _s, int _t) {
this->n = _n, this->s = _s, this->t = _t;
for (int i = 1; i <= _n; i++) G[i].clear();
edge.clear();
}
void add(int u, int v, ll cap) {
edge.push_back(Edge(u, v, cap, 0));
edge.push_back(Edge(v, u, 0, 0));
int siz = edge.size();
G[u].push_back(siz - 2);
G[v].push_back(siz - 1);
}
void BFS() {
for (int i = 1; i <= n; i++) dis[i] = n;
queue<int> que;
que.push(t);
dis[t] = 0;
while (que.size()) {
int u = que.front();
que.pop();
for (int i = 0; i < G[u].size(); i++) {
Edge &e = edge[G[u][i]];
if (e.cap <= e.flow && dis[e.v] == n) {
que.push(e.v);
dis[e.v] = dis[u] + 1;
}
}
}
}
ll Augment() {
ll x = t, a = 0x3f3f3f3f;
while (x != s) {
Edge &e = edge[p[x]];
a = min(a, e.cap - e.flow);
x = edge[p[x]].u;
}
x = t;
while (x != s) {
edge[p[x]].flow += a;
edge[p[x] ^ 1].flow -= a;
x = edge[p[x]].u;
}
return a;
}
ll MaxFlow() {
ll flow = 0LL;
///bfs();//wa
BFS();//ac
memset(num, 0, sizeof num);
for (int i = 0; i <= n; i++) num[dis[i]]++;
int x = s;
memset(cur, 0, sizeof cur);
while (dis[s] < n) {
if (x == t) {
flow += Augment();
x = s;
}
int ok = 0;
for (int i = cur[x]; i < G[x].size(); i++) {
Edge &e = edge[G[x][i]];
if (e.cap > e.flow && dis[x] == dis[e.v] + 1) {
ok = 1;
p[e.v] = G[x][i];
cur[x] = i;
x = e.v;
break;
}
}
if (!ok) {
ll m = n - 1;
for (int i = 0; i < G[x].size(); i++) {
Edge &e = edge[G[x][i]];
if (e.cap > e.flow) m = min(m, dis[e.v]);
}
if (--num[dis[x]] == 0) break;
num[dis[x] = m + 1]++;
cur[x] = 0;
if (x != s) x = edge[p[x]].u;
}
}
return flow;
}
} solve;
int main() {
int n = read, m = read, s = read, t = read;
solve.init(n, s, t);
for (int i = 1; i <= m; i++) {
int u = read, v = read;
ll cap = read;
solve.add(u, v, cap);
}
cout << solve.MaxFlow() << endl;
return 0;
}