哈密顿绕行世界问题
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 712 Accepted Submission(s): 434
Problem Description
一个规则的实心十二面体,它的 20个顶点标出世界著名的20个城市,你从一个城市出发经过每个城市刚好一次后回到出发的城市。
Input
前20行的第i行有3个数,表示与第i个城市相邻的3个城市.第20行以后每行有1个数m,m<=20,m>=1.m=0退出.
Output
输出从第m个城市出发经过每个城市1次又回到m的所有路线,如有多条路线,按字典序输出,每行1条路线.每行首先输出是第几条路线.然后个一个: 后列出经过的城市.参看Sample output
Sample Input
2 5 20
1 3 12
2 4 10
3 5 8
1 4 6
5 7 19
6 8 17
4 7 9
8 10 16
3 9 11
10 12 15
2 11 13
12 14 20
13 15 18
11 14 16
9 15 17
7 16 18
14 17 19
6 18 20
1 13 19
5
0
Sample Output
1: 5 1 2 3 4 8 7 17 18 14 15 16 9 10 11 12 13 20 19 6 5
2: 5 1 2 3 4 8 9 10 11 12 13 20 19 18 14 15 16 17 7 6 5
3: 5 1 2 3 10 9 16 17 18 14 15 11 12 13 20 19 6 7 8 4 5
4: 5 1 2 3 10 11 12 13 20 19 6 7 17 18 14 15 16 9 8 4 5
5: 5 1 2 12 11 10 3 4 8 9 16 15 14 13 20 19 18 17 7 6 5
6: 5 1 2 12 11 15 14 13 20 19 18 17 16 9 10 3 4 8 7 6 5
7: 5 1 2 12 11 15 16 9 10 3 4 8 7 17 18 14 13 20 19 6 5
8: 5 1 2 12 11 15 16 17 18 14 13 20 19 6 7 8 9 10 3 4 5
9: 5 1 2 12 13 20 19 6 7 8 9 16 17 18 14 15 11 10 3 4 5
10: 5 1 2 12 13 20 19 18 14 15 11 10 3 4 8 9 16 17 7 6 5
11: 5 1 20 13 12 2 3 4 8 7 17 16 9 10 11 15 14 18 19 6 5
12: 5 1 20 13 12 2 3 10 11 15 14 18 19 6 7 17 16 9 8 4 5
13: 5 1 20 13 14 15 11 12 2 3 10 9 16 17 18 19 6 7 8 4 5
14: 5 1 20 13 14 15 16 9 10 11 12 2 3 4 8 7 17 18 19 6 5
15: 5 1 20 13 14 15 16 17 18 19 6 7 8 9 10 11 12 2 3 4 5
16: 5 1 20 13 14 18 19 6 7 17 16 15 11 12 2 3 10 9 8 4 5
17: 5 1 20 19 6 7 8 9 10 11 15 16 17 18 14 13 12 2 3 4 5
18: 5 1 20 19 6 7 17 18 14 13 12 2 3 10 11 15 16 9 8 4 5
19: 5 1 20 19 18 14 13 12 2 3 4 8 9 10 11 15 16 17 7 6 5
20: 5 1 20 19 18 17 16 9 10 11 15 14 13 12 2 3 4 8 7 6 5
21: 5 4 3 2 1 20 13 12 11 10 9 8 7 17 16 15 14 18 19 6 5
22: 5 4 3 2 1 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5
23: 5 4 3 2 12 11 10 9 8 7 6 19 18 17 16 15 14 13 20 1 5
24: 5 4 3 2 12 13 14 18 17 16 15 11 10 9 8 7 6 19 20 1 5
25: 5 4 3 10 9 8 7 6 19 20 13 14 18 17 16 15 11 12 2 1 5
26: 5 4 3 10 9 8 7 17 16 15 11 12 2 1 20 13 14 18 19 6 5
27: 5 4 3 10 11 12 2 1 20 13 14 15 16 9 8 7 17 18 19 6 5
28: 5 4 3 10 11 15 14 13 12 2 1 20 19 18 17 16 9 8 7 6 5
29: 5 4 3 10 11 15 14 18 17 16 9 8 7 6 19 20 13 12 2 1 5
30: 5 4 3 10 11 15 16 9 8 7 17 18 14 13 12 2 1 20 19 6 5
31: 5 4 8 7 6 19 18 17 16 9 10 3 2 12 11 15 14 13 20 1 5
32: 5 4 8 7 6 19 20 13 12 11 15 14 18 17 16 9 10 3 2 1 5
33: 5 4 8 7 17 16 9 10 3 2 1 20 13 12 11 15 14 18 19 6 5
34: 5 4 8 7 17 18 14 13 12 11 15 16 9 10 3 2 1 20 19 6 5
35: 5 4 8 9 10 3 2 1 20 19 18 14 13 12 11 15 16 17 7 6 5
36: 5 4 8 9 10 3 2 12 11 15 16 17 7 6 19 18 14 13 20 1 5
37: 5 4 8 9 16 15 11 10 3 2 12 13 14 18 17 7 6 19 20 1 5
38: 5 4 8 9 16 15 14 13 12 11 10 3 2 1 20 19 18 17 7 6 5
39: 5 4 8 9 16 15 14 18 17 7 6 19 20 13 12 11 10 3 2 1 5
40: 5 4 8 9 16 17 7 6 19 18 14 15 11 10 3 2 12 13 20 1 5
41: 5 6 7 8 4 3 2 12 13 14 15 11 10 9 16 17 18 19 20 1 5
42: 5 6 7 8 4 3 10 9 16 17 18 19 20 13 14 15 11 12 2 1 5
43: 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5
44: 5 6 7 8 9 16 17 18 19 20 1 2 12 13 14 15 11 10 3 4 5
45: 5 6 7 17 16 9 8 4 3 10 11 15 14 18 19 20 13 12 2 1 5
46: 5 6 7 17 16 15 11 10 9 8 4 3 2 12 13 14 18 19 20 1 5
47: 5 6 7 17 16 15 11 12 13 14 18 19 20 1 2 3 10 9 8 4 5
48: 5 6 7 17 16 15 14 18 19 20 13 12 11 10 9 8 4 3 2 1 5
49: 5 6 7 17 18 19 20 1 2 3 10 11 12 13 14 15 16 9 8 4 5
50: 5 6 7 17 18 19 20 13 14 15 16 9 8 4 3 10 11 12 2 1 5
51: 5 6 19 18 14 13 20 1 2 12 11 15 16 17 7 8 9 10 3 4 5
52: 5 6 19 18 14 15 11 10 9 16 17 7 8 4 3 2 12 13 20 1 5
53: 5 6 19 18 14 15 11 12 13 20 1 2 3 10 9 16 17 7 8 4 5
54: 5 6 19 18 14 15 16 17 7 8 9 10 11 12 13 20 1 2 3 4 5
55: 5 6 19 18 17 7 8 4 3 2 12 11 10 9 16 15 14 13 20 1 5
56: 5 6 19 18 17 7 8 9 16 15 14 13 20 1 2 12 11 10 3 4 5
57: 5 6 19 20 1 2 3 10 9 16 15 11 12 13 14 18 17 7 8 4 5
58: 5 6 19 20 1 2 12 13 14 18 17 7 8 9 16 15 11 10 3 4 5
59: 5 6 19 20 13 12 11 10 9 16 15 14 18 17 7 8 4 3 2 1 5
60: 5 6 19 20 13 14 18 17 7 8 4 3 10 9 16 15 11 12 2 1 5
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
struct Node
{
int a,b,c;
int cur;
}N[22];
int vis[22]; int t; int fuck;
int cnt=0;
void dfs(int n)
{
if(n==t)
{
int OK=0;
for(int i=1;i<=20;i++)
{
if(vis==0)
{
OK++;
}
}
if(OK>1)
{
return ;
}
else if(OK==1)
{
int visk[22];
memset(visk,0,sizeof(visk));
if(fuck==1)
visk[N[t].a]++;
else if(fuck==2)
visk[N[t].b]++;
else if(fuck==3)
visk[N[t].c]++;
for(int i=1;i<=20;i++)
{
for(int j=1;j<=20;j++)
if(vis[j]==i)
visk[j]++;
}
for(int i=1;i<=20;i++)
{
if(visk!=1)
{
OK=0;
break;
}
}
if(OK)
{
printf("%d: ",++cnt);
printf("%d",t);
if(fuck==1)
printf(" %d",N[t].a);
else if(fuck==2)
printf(" %d",N[t].b);
else if(fuck==3)
printf(" %d",N[t].c);
for(int i=1;i<=20;i++)
{
for(int j=1;j<=20;j++)
if(vis[j]==i)
printf(" %d",j);
}
putchar(10);
}
return ;
}
}
else
{
if(vis[N[n].a]==0)
{
vis[N[n].a]=vis[n]+1;
dfs(N[n].a);
vis[N[n].a]=0;
}
if(vis[N[n].b]==0)
{
vis[N[n].b]=vis[n]+1;
dfs(N[n].b);
vis[N[n].b]=0;
}
if(vis[N[n].c]==0)
{
vis[N[n].c]=vis[n]+1;
dfs(N[n].c);
vis[N[n].c]=0;
}
}
}
int main()
{
for(int i=1;i<=20;i++)
{
scanf("%d%d%d",&N.a,&N.b,&N.c);
N.cur=0;
}
while(scanf("%d",&t)&&t)
{
cnt=0;
memset(vis,0,sizeof(vis));
fuck=1;
dfs(N[t].a);
fuck=2;
dfs(N[t].b);
fuck=3;
dfs(N[t].c);
}
return 0;
}