Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
Solution:
N-Queens 问题的简化版。
public class Solution { private int ans = 0; public int totalNQueens(int n) { List<String[]> result = new ArrayList<String[]>(); if (n == 0) return ans; int[] rCol = new int[n]; queens(result, rCol, 0, n); return ans; } private void queens(List<String[]> result, int[] rCol, int row, int n) { // TODO Auto-generated method stub if (row == n) { ans++; return; } for (int col = 0; col < n; ++col) { rCol[row] = col; if (check(rCol, row)) { queens(result, rCol, row + 1, n); } } } private boolean check(int[] rCol, int row) { // TODO Auto-generated method stub for (int i = 0; i < row; ++i) { if (rCol[i] == rCol[row]) return false; if (Math.abs(row - i) == Math.abs(rCol[row] - rCol[i])) { return false; } } return true; } }