• 多进程与多线程1


    Python中的多进程与多线程(一)

     

    一、背景

      最近在Azkaban的测试工作中,需要在测试环境下模拟线上的调度场景进行稳定性测试。故而重操python旧业,通过python编写脚本来构造类似线上的调度场景。在脚本编写过程中,碰到这样一个需求:要在测试环境创建10000个作业流。

      最开始的想法是在一个azkaban project下循环调用10000次create job接口(每个Flow只包含一个job)。由于azkaban它本身没有增加/删除作业流的接口,所有的作业流修改、增加、删除其实都是通过重新上传项目zip包实现的,相应地每次调猛犸前端的create job接口,实际上是在猛犸端对zip包的内容进行了重新的整合后再重新上传zip包到azkaban,整个过程可以拆解成如下过程:解压zip包获得zip包内容,变更zip包内的文件内容,重新打包zip包,上传到azkaban。因此,随着循环次数越往后,zip包包含的内容会越多,接口执行一次的时间就越长。实践发现,第一次调该接口的时间大致不到1秒,到循环1000次的时候接口调用一次的时间就达到了将近3秒。因此,如果指望一个循环10000次来构造该场景,显然要耗费巨大的时间。

      在此背景下, 自然而然地就想到用多进程/多线程的方式来处理该问题。

    二、“多任务”的操作系统基础

      大家都知道,操作系统可以同时运行多个任务。比如你一边听音乐,一边聊IM,一边写博客等。现在的cpu大都是多核的,但即使是过去的单核cpu也是支持多任务并行执行。

      单核cpu执行多任务的原理:操作系统交替轮流地执行各个任务。先让任务1执行0.01秒,然后切换到任务2执行0.01秒,再切换到任务3执行0.01秒...这样往复地执行下去。由于cpu的执行速度非常快,所以使用者的主观感受就是这些任务在并行地执行。

      多核cpu执行多任务的原理:由于实际应用中,任务的数量往往远超过cpu的核数,所以操作系统实际上是把这些多任务轮流地调度到每个核心上执行。

      对于操作系统来说,一个应用就是一个进程。比如打开一个浏览器,它是一个进程;打开一个记事本,它是一个进程。每个进程有它特定的进程号。他们共享系统的内存资源。进程是操作系统分配资源的最小单位。

      而对于每一个进程而言,比如一个视频播放器,它必须同时播放视频和音频,就至少需要同时运行两个“子任务”,进程内的这些子任务就是通过线程来完成。线程是最小的执行单元。一个进程它可以包含多个线程,这些线程相互独立,同时又共享进程所拥有的资源。

    三、Python多进程编程

      1. multiprocessing

      multiprocessing是Python提供的一个跨平台的多进程模块,通过它可以很方便地编写多进程程序,在不同的平台(Unix/Linux, Windows)都可以执行。

      下面就是使用multiprocessing编写多进程程序的代码:  

    复制代码
    #!/usr/bin/python
    # -*- coding: utf-8 -*
    __author__ = 'zni.feng'
    import  sys
    reload (sys)
    sys.setdefaultencoding('utf-8')
    
    from multiprocessing import Process
    import os
    import time
    
    #子进程fun
    def child_projcess_fun(name):
        print 'Child process %s with processId %s starts.' % (name, os.getpid())
        time.sleep(3)
        print 'Child process %s with processId %s ends.' % (name, os.getpid())
    
    if __name__ == "__main__":
        print 'Parent processId is: %s.' % os.getpid()
        p = Process(target = child_projcess_fun, args=('zni',))
        print 'Process starts'
        p.start() #开始进程
        p.join() #等待子进程结束后再继续往下执行
        print 'Process ends.'
    复制代码

    程序的输出:

    Parent processId is: 11076.
    Process starts
    Child process zni with processId 11077 starts.
    Child process zni with processId 11077 ends.
    Process ends.
    [Finished in 3.1s]

      2. Pool 

      某些情况下,我们希望批量创建多个子进程,或者给定子进程数的上限,避免无限地消耗系统的资源。通过Pool(进程池)的方式,就可以完成这项工作,下面是使用Pool的代码:

    复制代码
     1 #!/usr/bin/python
     2 # -*- coding: utf-8 -*
     3 __author__ = 'zni.feng'
     4 import  sys
     5 reload (sys)
     6 sys.setdefaultencoding('utf-8')
     7 
     8 from multiprocessing import Pool
     9 import os, time
    10 
    11 def child_process_test(name, sleep_time):
    12     print 'Child process %s with processId %s starts.' % (name, os.getpid())
    13     time.sleep(sleep_time)
    14     print 'Child process %s with processId %s ends.' % (name, os.getpid())
    15 
    16 if __name__ == "__main__":
    17     print 'Parent processId is: %s.' % os.getpid()
    18     p = Pool()  #进程池默认大小是cpu的核数
    19     #p = Pool(10) #生成一个容量为10的进程池,即最大同时执行10个子进程
    20     for i in range(5):
    21         p.apply_async(child_process_test, args=('zni_'+str(i), i+1,)) #p.apply_async向进程池提交目标请求
    22 
    23     print 'Child processes are running.'
    24     p.close()
    25     p.join() #用来等待进程池中的所有子进程结束再向下执行代码,必须在p.close()或者p.terminate()之后执行
    26     print 'All Processes end.'
    复制代码

    程序的输出:

    复制代码
    Parent processId is: 5050.
    Child processes are running.
    Child process zni_0 with processId 5052 starts.
    Child process zni_1 with processId 5053 starts.
    Child process zni_2 with processId 5054 starts.
    Child process zni_3 with processId 5055 starts.
    Child process zni_0 with processId 5052 ends.
    Child process zni_4 with processId 5052 starts.
    Child process zni_1 with processId 5053 ends.
    Child process zni_2 with processId 5054 ends.
    Child process zni_3 with processId 5055 ends.
    Child process zni_4 with processId 5052 ends.
    All Processes end.
    [Finished in 6.2s]
    复制代码

    close()方法和terminate()方法的区别:

      close:关闭进程池,使之不能再添加新的进程。已经执行的进程会等待继续执行直到结束。

      terminate:强制终止线程池,正在执行的进程也会被强制终止。

      3. 进程间通信 

      Python的multiprocessing模块提供了多种进程间通信的方式,如Queue、Pipe等。

      3.1 Queue、Lock

      Queue是multiprocessing提供的一个模块,它的数据结构就是"FIFO——first in first out"的队列,常用的方法有:put(object)入队;get()出队;empty()判断队列是否为空。

      Lock:当多个子进程对同一个queue执行写操作时,为了避免并发操作产生冲突,可以通过加锁的方式使得某个子进程对queue拥有唯一的写权限,其他子进程必须等待该锁释放后才能再开始执行写操作。

      下面就是使用Queue进行进程间通信的代码:在父进程里创建两个子进程,分别实现对queue的读和写操作

    复制代码
     1 #!/usr/bin/python
     2 # -*- coding: utf-8 -*
     3 __author__ = 'zni.feng'
     4 import  sys
     5 reload (sys)
     6 sys.setdefaultencoding('utf-8')
     7 from multiprocessing import Process, Queue, Lock
     8 import os, time, random
     9 #写数据进程
    10 def write(q, lock, name):
    11     print 'Child Process %s starts' % name
    12     #加锁
    13     lock.acquire()
    14     for value in ['A' , 'B', 'C']:
    15         print 'Put %s to queue...' % value
    16         q.put(value)
    17         time.sleep(random.random())
    18     #释放锁
    19     lock.release()
    20     print 'Child Process %s ends' % name
    21 
    22 #读数据进程
    23 def read(q, lock, name):
    24     print 'Child Process %s starts' % name
    25     while True: #持续地读取q中的数据
    26         value =q.get()
    27         print 'Get %s from queue.' % value
    28     print 'Child Process %s ends' % name
    29 
    30 if __name__ == "__main__":
    31     #父进程创建queue,并共享给各个子进程
    32     q= Queue()
    33     #创建锁
    34     lock = Lock()
    35     pw = Process(target = write , args=(q, lock, 'WRITE', ))
    36     pr = Process(target = read, args=(q,lock, 'READ',))
    37     #启动子进程pw,写入:
    38     pw.start()
    39     #启动子进程pr,读取:
    40     pr.start()
    41     #等待pw结束:
    42     pw.join()
    43     #pr是个死循环,通过terminate杀死:
    44     pr.terminate()
    45     print 'Test finish.'
    复制代码

      程序的输出结果为:

    复制代码
    Child Process WRITE starts
    Put A to queue...
    Child Process READ starts
    Get A from queue.
    Put B to queue...
    Get B from queue.
    Put C to queue...
    Get C from queue.
    Child Process WRITE ends
    Test finish.
    [Finished in 2.0s]
    复制代码

      3.2 Pipe

      Pipe是另一种进程间通信的方式,俗称“管道”。它由两端组成,一端往管道里写入数据,另一端从管道里读取数据。
      下面就是使用Pipe通信的代码:

    复制代码
     1 #!/usr/bin/python
     2 # -*- coding: utf-8 -*
     3 __author__ = 'zni.feng'
     4 import  sys
     5 reload (sys)
     6 sys.setdefaultencoding('utf-8')
     7 from multiprocessing import Process, Pipe
     8 import os, time, random
     9 
    10 #发送数据进程
    11 def send(child_pipe, name):
    12     print 'Child Process %s starts' % name
    13     child_pipe.send('This is Mr.Ni')
    14     child_pipe.close()
    15     time.sleep(random.random())
    16     print 'Child Process %s ends' % name
    17 
    18 #接收数据进程
    19 def recv(parent_pipe, name):
    20     print 'Child Process %s starts' % name
    21     print parent_pipe.recv()
    22     time.sleep(random.random())
    23     print 'Child Process %s ends' % name
    24 
    25 if __name__ == "__main__":
    26     #创建管道
    27     parent,child = Pipe()
    28     #创建send进程
    29     ps = Process(target=send, args=(child, 'SEND'))
    30     #创建recv进程
    31     pr = Process(target=recv, args=(parent, 'RECEIVE'))
    32     #启动send进程
    33     ps.start()
    34     #等待send进程结束
    35     ps.join()
    36     #启动recv进程
    37     pr.start()
    38     #等待recv进程结束
    39     pr.join()
    40     print 'Test finish.'
    复制代码

      程序的输出结果如下:

    复制代码
    Child Process SEND starts
    Child Process SEND ends
    Child Process RECEIVE starts
    This is Mr.Ni
    Child Process RECEIVE ends
    Test finish.
    [Finished in 1.8s]
    复制代码
     
  • 相关阅读:
    Java算法练习——整数反转
    Java算法练习—— Z 字形变换
    Java算法练习——最长回文子串
    vs code自动生成html代码
    thinkphp整合后台模板
    composer安装后台模板
    composer(作曲家)安装php-ml
    两个网站
    PHP的开源产品discuz
    onethink中的用户登录session签名
  • 原文地址:https://www.cnblogs.com/Leo_wl/p/6262741.html
Copyright © 2020-2023  润新知