• Magic Number Group (莫队+质因数)


    思路: 利用莫队,对每一个数列的元素的质因数(利用欧拉筛法)进行处理(类似众数的处理)

    莫队易错: 我的 add ,del 是 元素 i 的 而不是 val【i】的 ,不要搞错了,mdddd。

    G. Magic Number Group
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    Tsiying has a sequence of positive integers with a length of n and quickly calculates all the factors of each number. In order to exercise his factor calculation ability, he has selected q consecutive subsequences from the sequence and found a positive integer p greater than 1 for each subsequence, so that p can divide as many numbers in this subsequence as possible. He has also found that p​ may have more than one.
    
    So the question is, how many numbers in each subsequence can be divided at most?
    
    Input
    The first line contains an integer T (1≤T≤5×104), indicating that there is T​​ test cases next.
    
    The first line of each test cases has two positive integers n​ (1≤n≤5×104​), q (1≤q≤5×104)​​​.
    
    Next line n integers ai (1≤i≤n,1≤ai≤1×106), which representing the numbers in this sequence. The two adjacent numbers are separated by a space.
    
    Each of the next q lines contains two integers l,r (1≤l≤r≤n), representing a subsequence being queried, al,al+1,⋯,ar, and l,r are separated by a space.
    
    The input guarantees that the sum of n​ does not exceed 5×104​ and the sum of q​ does not exceed 5×104​.
    
    Output
    For each test case, output q lines, each line contains a positive integer, indicating the answer.
    
    Example
    inputCopy
    1
    10 5
    20 15 6 1 21 12 2 3 17 9
    1 4
    2 5
    3 6
    4 7
    5 10
    outputCopy
    2
    3
    3
    2
    4
    View problem
    #include <bits/stdc++.h>
    using namespace std;
    #define ri register int 
    #define  M 1000005
    
    
    template <class G > void read(G &x)
    {
        x=0;int f=0;char ch=getchar();
        while(ch<'0'||ch>'9'){f|=ch=='-';ch=getchar();}
        while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
        x=f?-x:x;
        return ;
     } 
     
    struct dain{
        int l,r,id,pos;
        bool operator <(const dain &t) const 
        {
            if(pos==t.pos)
            {
                if(r==t.r) return l<t.l;
                return r<t.r;
            }
            return pos<t.pos;
        }
    }p[M];
    int val[M];
    int mx;
    int T,n,m;
    int prism[M],isprism[M];
    int qu[M];
    void init()
    {
        int r=0;
        for(ri i=2;i<=1e6;i++)
        {
            if(!isprism[i])
            {
                qu[++r]=i;
                isprism[i]=i;
            }
            for(ri j=1;j<=r&&qu[j]*i<=1e6;j++)
            {
                isprism[qu[j]*i]=qu[j];
                if(i%qu[j]==0) break;
            }
        }
        
    }
    int dp[M],num[M];
    void add(int a)
    {
        a=val[a];
        while(isprism[a])
        {
            int tmp=isprism[a];
            while(tmp==isprism[a])
            {
                a/=isprism[a];
            }
            
            num[tmp]++;
            dp[num[tmp]]++;
            dp[num[tmp]-1]--;
            mx=max(mx,num[tmp]);
        }
    }
    void del(int a)
    {
        a=val[a];
        while(isprism[a])
        {
            int tmp=isprism[a];
            while(tmp==isprism[a])
            {
                a/=tmp;
            }
            if(dp[num[tmp]]==1&&mx==num[tmp])
            {
                mx--;
            }
            dp[num[tmp]]--;
            dp[--num[tmp]]++;
        }
    }
    int ans[M];
    int main(){
        
        init();
        read(T);
        while(T--){
            
            read(n);read(m);
            for(ri i=1;i<=n;i++)
            {
                read(val[i]);
            }
            
            int d=int(sqrt(n)+0.5);
            for(ri i=1;i<=m;i++)
            {
                int a,b;
                read(a);read(b);
                p[i].l=a;p[i].r=b;
                p[i].pos=a/d;p[i].id=i;
            }
            
            sort(p+1,p+1+m);
            
            int l=1,r=1;mx=0;
            add(1);   /// attention 
            for(ri i=1;i<=m;i++)
            {
                while(l<p[i].l) del(l++);
                while(r<p[i].r) add(++r);
                while(l>p[i].l) add(--l);
                while(r>p[i].r) del(r--);
                ans[p[i].id]=mx;
            }
            
            for(ri i=1;i<=m;i++)
            {
                printf("%d\n",ans[i]);
            }
            for(ri i=p[m].l;i<=p[m].r;i++)
            {
                del(i);
            }
            
        }
        return 0;
        
        
        
    } 
    View Code

    学到了:莫队的预处理:直接add(1),l=r=1;

  • 相关阅读:
    PAT甲级1018Public Bike Management
    PAT甲级1003Emergency
    android的AIDL
    View的滑动冲突和解决方案
    弹性滑动原理
    View的滑动原理和多种滑动方法
    Android的Activity的生命周期
    Android获取App版本号和版本名
    转:Android检查设备是否联网
    androidstudio实现增量更新步骤
  • 原文地址:https://www.cnblogs.com/Lamboofhome/p/16057995.html
Copyright © 2020-2023  润新知