• $O(k^2)$ 求前缀 $k$ 次幂和(与长度无关)


    接下来求解前缀幂次和

    求解 (sum_{i = 1}^{k} i^k)

    [egin{aligned} (p+1)^k - 1 = (p+1)^k - p^k + p^k - (p-1)^k + dots + p^1 - 1 \ (p+1)^k - p^k = sum_{i=0}^{k-1} inom{k}{i} p^i \ (p+1)^k - 1 = sum_{j=1}^{p} sum_{i=0}^{k-1} inom{k}{i} j^i = sum_{i=0}^{k-1} inom{k}{i} sum_{j=1}^{p} j^i end{aligned} ]

    (Psum(p, k) = sum_{i = 1} ^ {p} i ^ k)(k) 次幂的前缀和

    [egin{aligned} (p+1)^{k+1} - 1 = sum_{i=0}^{k} inom{k+1}{i} Psum(p, i) \ Psum(p, k) = frac{ (p+1)^{k+1} - 1 - sum_{i=0}^{k-1} inom{k+1}{i} Psum(p, i) }{ inom{k+1}{k} } \ end{aligned} ]

    这样就是跟 (p) 无关了, (O(k ^ 2)) 暴力推

  • 相关阅读:
    CSS属性值一览
    CSS属性一览
    CSS选择器一览
    HTML颜色编码
    游戏
    数据库系统概念
    关于总结
    章节测试
    我的博客皮肤
    Emeditor所有快捷键操作
  • 原文地址:https://www.cnblogs.com/Kuonji/p/11842819.html
Copyright © 2020-2023  润新知