题意:有一个有向图,有些点是煤,有些点是铁,但不会同时有铁和煤。现在我要从1出发,占领可以到达的点。问最少占领几个点能同时拥有一个煤和一个铁(1不用占领)。
思路:思路很秀啊。我们从1往外bfs,得到所有点到1的最短路dis[i][0],然后从所有煤跑bfs得到所有点到煤的最短路dis[i][1],我们再从所有铁跑bfs得到所有点到铁的最短路dis[i][2],那么dis[i][0] + dis[i][1] + dis[i][2]就是以i为分界点分别前往煤和铁的占领的最小距离。那么答案就是min{ dis[i][0] + dis[i][1] + dis[i][2] }。
代码:
#include<cmath> #include<set> #include<map> #include<queue> #include<cstdio> #include<vector> #include<cstring> #include <iostream> #include<algorithm> using namespace std; typedef long long ll; typedef unsigned long long ull; const int maxn = 1e5 + 10; const ull seed = 131; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; int n, m, k; int iron[maxn], coal[maxn], vis[maxn]; vector<int> G[maxn], g[maxn]; int dis[maxn][3]; struct node{ int x; int step; }; void bfs1(){ for(int i = 1; i <= n; i++) vis[i] = 0; queue<node> q; while(!q.empty()) q.pop(); vis[1] = 1; dis[1][0] = 0; node a, b; a.x = 1, a.step = 0; q.push(a); while(!q.empty()){ a = q.front(); q.pop(); for(int i = 0; i < G[a.x].size(); i++){ int v = G[a.x][i]; if(vis[v]) continue; vis[v] = 1; dis[v][0] = a.step + 1; b.x = v, b.step = a.step + 1; q.push(b); } } } void bfs2(){ for(int i = 1; i <= n; i++) vis[i] = 0; queue<node> q; while(!q.empty()) q.pop(); node a, b; for(int i = 1; i <= n; i++){ if(iron[i]){ vis[i] = 1; dis[i][1] = 0; a.x = i, a.step = 0; q.push(a); } } while(!q.empty()){ a = q.front(); q.pop(); for(int i = 0; i < g[a.x].size(); i++){ int v = g[a.x][i]; if(vis[v]) continue; vis[v] = 1; dis[v][1] = a.step + 1; b.x = v, b.step = a.step + 1; q.push(b); } } } void bfs3(){ for(int i = 1; i <= n; i++) vis[i] = 0; queue<node> q; while(!q.empty()) q.pop(); node a, b; for(int i = 1; i <= n; i++){ if(coal[i]){ vis[i] = 1; dis[i][2] = 0; a.x = i, a.step = 0; q.push(a); } } while(!q.empty()){ a = q.front(); q.pop(); for(int i = 0; i < g[a.x].size(); i++){ int v = g[a.x][i]; if(vis[v]) continue; vis[v] = 1; dis[v][2] = a.step + 1; b.x = v, b.step = a.step + 1; q.push(b); } } } int main(){ scanf("%d%d%d", &n, &m, &k); for(int i = 1; i <= n; i++){ iron[i] = coal[i] = 0; G[i].clear(); g[i].clear(); memset(dis[i], INF, sizeof(dis[i])); } for(int i = 1; i <= m; i++){ int u; scanf("%d", &u); iron[u] = 1; } for(int i = 1; i <= k; i++){ int u; scanf("%d", &u); coal[u] = 1; } for(int i = 1; i <= n; i++){ int p, u, v; scanf("%d", &p); u = i; while(p--){ scanf("%d", &v); G[u].push_back(v); g[v].push_back(u); } } bfs1(); bfs2(); bfs3(); int ans = INF; for(int i = 1; i <= n; i++){ if(dis[i][0] == INF || dis[i][1] == INF || dis[i][2] == INF) continue; ans = min(ans, dis[i][0] + dis[i][1] + dis[i][2]); } if(ans < INF) printf("%d ", ans); else printf("impossible "); return 0; }