Matrix-Tree定理
对于一个n个顶点的无向图G
度矩阵D:设i顶点的度数为du[i],则D[i][i]=du[i]
邻接矩阵A:若i和j之间有边,则A[i][j]=1,否则为0
Kirchhoff矩阵C:C=D-A
Matrix-Tree定理:对于一个无向图G,它的生成树个数等于其Kirchhoff矩阵任何一个n-1阶主子式的行列式的绝对值。
例题
题目链接:hdu 4305
思路:先按要求建图,再求出Kirchhoff矩阵C,最后求C的任何一个n-1阶行列式的绝对值
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 310;
const int mod = 10007;
LL x[N],y[N];
LL dis[N][N];
LL a[N][N];
LL inv(LL a,LL b)
{
LL res=1;
while(b)
{
if(b&1)res=(res*a)%mod;
b>>=1;
a=(a*a)%mod;
}
return res;
}
int judge(int i,int j,int k)//判断k是否是i和j连线上的点
{
LL x1=x[j]-x[i],y1=y[j]-y[i];
LL x2=x[k]-x[i],y2=y[k]-y[i];
if(x1*y2==x2*y1&&x1*x2>=0&&dis[i][j]>dis[i][k])return 1;
return 0;
}
int main()
{
int T;
cin>>T;
while(T--)
{
memset(a,0,sizeof(a));
memset(dis,0,sizeof(dis));
int n;
LL r;
scanf("%d%lld",&n,&r);
for(int i=1;i<=n;i++)
scanf("%lld%lld",&x[i],&y[i]);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
dis[i][j]=dis[j][i]=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
{
if(dis[i][j]>r*r)continue;
int k;
for(k=1;k<=n;k++)
{
if(k==i||k==j)continue;
if(judge(i,j,k))break;
}
if(k>n)
{
a[i][j]=a[j][i]=-1;
a[i][i]++;a[j][j]++;
}
}
}
LL ans=1;
//化成下三角形
for(int i=1;i<n;i++)
{
LL t=inv(a[i][i],mod-2);
for(int j=i+1;j<n;j++)
{
LL tmp=a[j][i]*t%mod;
for(int k=1;k<n;k++)
a[j][k]=(a[j][k]-a[i][k]*tmp%mod+mod)%mod;
}
}
for(int i=1;i<n;i++)
ans=ans*a[i][i]%mod;
if(ans==0)printf("-1
");
else printf("%lld
",ans);
}
return 0;
}