由Hall定理,任意k种减肥药对应的药材数量>=k。考虑如何限制其恰好为k,可以将其看作是使对应的药材数量尽量少。
考虑最小割。建一个二分图,左边的点表示减肥药,右边的点表示药材。减肥药和其使用的药材连inf边,这里的inf边较大,可以取到1e18;源向减肥药连inf-pi的边,表示不选这种减肥药会损失pi,这里的inf边较小,可以取到1e9;药材向汇连1e9的inf边,用来限制药材数量。容易发现最后的最小割中至少会割掉n条边,且割掉的边越少越优,而当恰好割掉n条边时,就对应了一种减肥药与药材数量相等的方案。直接跑最小割即可。这是一种针对多级限制的思想。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespace std; #define ll long long #define N 610 #define S 0 #define T 601 #define inf 1000000000 #define INF 1000000000000000000ll char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;} int gcd(int n,int m){return m==0?n:gcd(m,n%m);} int read() { int x=0,f=1;char c=getchar(); while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();} while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar(); return x*f; } int n,a[N],p[N],d[N],cur[N],q[N],t=-1; ll ans; struct data{int to,nxt;ll cap,flow; }edge[N*N<<2]; void addedge(int x,int y,ll z) { t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].cap=z,p[x]=t; t++;edge[t].to=x,edge[t].nxt=p[y],edge[t].cap=0,p[y]=t; } bool bfs() { memset(d,255,sizeof(d));d[S]=0; int head=0,tail=1;q[1]=S; do { int x=q[++head]; for (int i=p[x];~i;i=edge[i].nxt) if (d[edge[i].to]==-1&&edge[i].flow<edge[i].cap) { d[edge[i].to]=d[x]+1; q[++tail]=edge[i].to; } }while (head<tail); return ~d[T]; } ll work(int k,ll f) { if (k==T) return f; ll used=0; for (int i=cur[k];~i;i=edge[i].nxt) if (d[k]+1==d[edge[i].to]) { ll w=work(edge[i].to,min(f-used,edge[i].cap-edge[i].flow)); edge[i].flow+=w,edge[i^1].flow-=w; if (edge[i].flow<edge[i].cap) cur[k]=i; used+=w;if (used==f) return f; } if (used==0) d[k]=-1; return used; } void dinic() { while (bfs()) { memcpy(cur,p,sizeof(p)); ans-=work(S,INF); } } int main() { #ifndef ONLINE_JUDGE freopen("loj6045.in","r",stdin); freopen("loj6045.out","w",stdout); const char LL[]="%I64d "; #else const char LL[]="%lld "; #endif n=read(); memset(p,255,sizeof(p)); for (int i=1;i<=n;i++) { int m=read(); while (m--) { int x=read(); addedge(i,n+x,INF); } } for (int i=1;i<=n;i++) a[i]=read(); for (int i=1;i<=n;i++) addedge(S,i,inf-a[i]),ans+=inf-a[i]; for (int i=1;i<=n;i++) addedge(n+i,T,inf); dinic(); cout<<-ans; return 0; }