• [HNOI2011]数学作业 矩阵快速幂 BZOJ 2326


    题目描述

    小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题:

    给定正整数 NNN 和 MMM ,要求计算Concatenate(1..N) Concatenate (1 .. N) Concatenate(1..N) ModModMod MMM 的值,其中 Concatenate(1..N) Concatenate (1 .. N) Concatenate(1..N) 是将所有正整数 1,2,…,N1, 2, …, N1,2,,N 顺序连接起来得到的数。例如,N=13N = 13N=13 , Concatenate(1..N)=12345678910111213Concatenate (1 .. N)=12345678910111213Concatenate(1..N)=12345678910111213 .小C 想了大半天终于意识到这是一道不可能手算出来的题目,于是他只好向你求助,希望你能编写一个程序帮他解决这个问题。

    输入输出格式

    输入格式:

    从文件input.txt中读入数据,输入文件只有一行且为用空格隔开的两个正整数N和M,其中30%的数据满足1≤N≤10000001≤N≤10000001N1000000 ;100%的数据满足1≤N≤10181≤N≤10^{18}1N1018 且1≤M≤1091≤M≤10^91M109 .

    输出格式:

    输出文件 output.txt 仅包含一个非负整数,表示 Concatenate(1..N)Concatenate (1 .. N)Concatenate(1..N) ModModMod MMM 的值。

    输入输出样例

    输入样例#1: 复制
    13 13
    输出样例#1: 复制
    4

    范围1e18,logn算法;
    递推方程: f[ n ]= f[ n-1 ] * 10^( len(n) )+ n;
    直接递推显然不行;
    换成矩阵加速递推;
    ( fn,n,1 )= ( f(n-1),n-1,1 )( 10^(len) , 0 , 0
    1 , 1 , 0
    1 , 1 , 1 );
    这里的 len 指的是 n 的位数;
    那么我们每次枚举其位数进行计算即可;
    这里我的快速幂参考了别人的封装;
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 2000005
    #define inf 0x7fffffff
    //#define INF 1e18
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-3
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    inline ll rd() {
    	ll x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    ll sqr(ll x) { return x * x; }
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    ll mode;
    struct mat {
    	ll n, m, a[5][5];
    	mat(ll n, ll m) {
    		this->n = n; this->m = m; ms(a);
    	}
    	mat(ll n, ll m, char e) {
    		this->n = n; this->m = m; ms(a);
    		for (int i = 1; i <= n; i++)a[i][i] = 1;
    	}
    	ll *operator[](const ll x) {
    		return a[x];
    	}
    	mat operator*(mat b) {
    		mat c(n, b.m);
    		for (int i = 1; i <= n; i++) {
    			for (int j = 1; j <= b.m; j++) {
    				for (int k = 1; k <= m; k++)
    					c[i][j] = (c[i][j] + a[i][k] % mode*b[k][j] % mode) % mode;
    			}
    		}
    		return c;
    	}
    	void operator*=(mat& b) {
    		*this = *this*b;
    	}
    	mat operator ^(ll b) {
    		mat ans(n, m, 'e'), a = *this;
    		while (b) {
    			if (b % 2)ans = ans * a;
    			a *= a; b >>= 1;
    		}
    		return ans;
    	}
    };
    
    ll n;
    int getlen(ll x) {
    	int len = 0;
    	while (x) {
    		len++; x /= 10;
    	}
    	return len;
    }
    
    ll pow10(int x) {
    	ll ans = 1;
    	for (int i = 1; i <= x; i++)ans *= 10; return ans;
    }
    
    
    int main() {
    	//ios::sync_with_stdio(0);
    	rdllt(n); rdllt(mode);
    	mat A(1, 3);
    	int len = getlen(n);
    	A[1][1] = A[1][2] = A[1][3] = 1;
    	for (int i = 0; i < len - 1; i++) {
    		mat B(3,3);
    		B[1][1] = pow10(i + 1) % mode;
    		B[2][1] = B[2][2] = B[3][1] = B[3][2] = B[3][3] = 1;
    		ll m = (pow10(i + 1) - pow10(i));
    		A = A * (B ^ (m - (i == 0 ? 1 : 0)));
    	}
    	mat B(3, 3);
    	B[1][1] = pow10(len) % mode;
    	B[2][1] = B[2][2] = B[3][1] = B[3][2] = B[3][3] = 1;
    	ll m = n - pow10(len - 1) + 1;
    	A = A * (B ^ (m - (len - 1 == 0 ? 1 : 0)));
    	cout << (ll)A[1][1] << endl;
    	return 0;
    }
    
    
    
    EPFL - Fighting
  • 相关阅读:
    day05 Python
    重新理解apache解析漏洞
    PhpAdmin安装报错, php syntax error, unexpected T_STRING on line 8
    一键配置Visual Studio Code( 1.57.1)开发java
    apt-get upgarde 和dist-upgrade的差别
    解决 Python2 报错 LookupError: unknown encoding: cp65001
    文件上传漏洞随手感想
    161端口SNMP敏感信息泄露漏洞
    使用电模拟器导出微信小程序包(wxapkg)
    kali安装docker
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10210518.html
Copyright © 2020-2023  润新知