• Java自定义类加载器与双亲委派模型详解


    转自:https://www.cnblogs.com/wxd0108/p/6681618.html

    其实,双亲委派模型并不复杂。自定义类加载器也不难!随便从网上搜一下就能搜出一大把结果,然后copy一下就能用。但是,如果每次想自定义类加载器就必须搜一遍别人的文章,然后复制,这样显然不行。可是自定义类加载器又不经常用,时间久了容易忘记。相信你经常会记不太清loadClassfindClassdefineClass这些函数我到底应该重写哪一个?它们主要是做什么的?本文大致分析了各个函数的流程,目的就是让你看完之后,难以忘记!或者说,延长你对自定义类加载器的记忆时间!随时随地想自定义就自定义!

    1. 双亲委派模型

    关于双亲委派模型,网上的资料有很多。我这里只简单的描述一下,就当是复习。

    1.1 什么是双亲委派模型?

    首先,先要知道什么是类加载器。简单说,类加载器就是根据指定全限定名称将class文件加载到JVM内存,转为Class对象。如果站在JVM的角度来看,只存在两种类加载器:

    • 启动类加载器(Bootstrap ClassLoader):由C++语言实现(针对HotSpot),负责将存放在<JAVA_HOME>lib目录或-Xbootclasspath参数指定的路径中的类库加载到内存中。

    • 其他类加载器:由Java语言实现,继承自抽象类ClassLoader。如:

      • 扩展类加载器(Extension ClassLoader):负责加载<JAVA_HOME>libext目录或java.ext.dirs系统变量指定的路径中的所有类库。
      • 应用程序类加载器(Application ClassLoader)。负责加载用户类路径(classpath)上的指定类库,我们可以直接使用这个类加载器。一般情况,如果我们没有自定义类加载器默认就是用这个加载器。

    双亲委派模型工作过程是:如果一个类加载器收到类加载的请求,它首先不会自己去尝试加载这个类,而是把这个请求委派给父类加载器完成。每个类加载器都是如此,只有当父加载器在自己的搜索范围内找不到指定的类时(即ClassNotFoundException),子加载器才会尝试自己去加载。


    类加载器的双亲委派模型

    1.2 为什么需要双亲委派模型?

    为什么需要双亲委派模型呢?假设没有双亲委派模型,试想一个场景:

    黑客自定义一个java.lang.String类,该String类具有系统的String类一样的功能,只是在某个函数稍作修改。比如equals函数,这个函数经常使用,如果在这这个函数中,黑客加入一些“病毒代码”。并且通过自定义类加载器加入到JVM中。此时,如果没有双亲委派模型,那么JVM就可能误以为黑客自定义的java.lang.String类是系统的String类,导致“病毒代码”被执行。

    而有了双亲委派模型,黑客自定义的java.lang.String类永远都不会被加载进内存。因为首先是最顶端的类加载器加载系统的java.lang.String类,最终自定义的类加载器无法加载java.lang.String类。

    或许你会想,我在自定义的类加载器里面强制加载自定义的java.lang.String类,不去通过调用父加载器不就好了吗?确实,这样是可行。但是,在JVM中,判断一个对象是否是某个类型时,如果该对象的实际类型与待比较的类型的类加载器不同,那么会返回false。

    举个简单例子:

    ClassLoader1ClassLoader2都加载java.lang.String类,对应Class1、Class2对象。那么Class1对象不属于ClassLoad2对象加载的java.lang.String类型。

    1.3 如何实现双亲委派模型?

    双亲委派模型的原理很简单,实现也简单。每次通过先委托父类加载器加载,当父类加载器无法加载时,再自己加载。其实ClassLoader类默认的loadClass方法已经帮我们写好了,我们无需去写。

    2. 自定义类加载器

    2. 1几个重要函数

    2.1.1 loadClass

    loadClass默认实现如下:

    public Class<?> loadClass(String name) throws ClassNotFoundException {
            return loadClass(name, false);
    }

    再看看loadClass(String name, boolean resolve)函数:

    复制代码
    protected Class<?> loadClass(String name, boolean resolve)
        throws ClassNotFoundException
    {
        synchronized (getClassLoadingLock(name)) {
            // First, check if the class has already been loaded
            Class c = findLoadedClass(name);
            if (c == null) {
                long t0 = System.nanoTime();
                try {
                    if (parent != null) {
                        c = parent.loadClass(name, false);
                    } else {
                        c = findBootstrapClassOrNull(name);
                    }
                } catch (ClassNotFoundException e) {
                    // ClassNotFoundException thrown if class not found
                    // from the non-null parent class loader
                }
    
                if (c == null) {
                    // If still not found, then invoke findClass in order
                    // to find the class.
                    long t1 = System.nanoTime();
                    c = findClass(name);
    
                    // this is the defining class loader; record the stats
                    sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
                    sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
                    sun.misc.PerfCounter.getFindClasses().increment();
                }
            }
            if (resolve) {
                resolveClass(c);
            }
            return c;
        }
    }
    复制代码

    从上面代码可以明显看出,loadClass(String, boolean)函数即实现了双亲委派模型!整个大致过程如下:

    1. 首先,检查一下指定名称的类是否已经加载过,如果加载过了,就不需要再加载,直接返回。
    2. 如果此类没有加载过,那么,再判断一下是否有父加载器;如果有父加载器,则由父加载器加载(即调用parent.loadClass(name, false);).或者是调用bootstrap类加载器来加载。
    3. 如果父加载器及bootstrap类加载器都没有找到指定的类,那么调用当前类加载器的findClass方法来完成类加载。

    话句话说,如果自定义类加载器,就必须重写findClass方法!

    2.1.1 find Class

    findClass的默认实现如下:

    protected Class<?> findClass(String name) throws ClassNotFoundException {
            throw new ClassNotFoundException(name);
    }

    可以看出,抽象类ClassLoaderfindClass函数默认是抛出异常的。而前面我们知道,loadClass在父加载器无法加载类的时候,就会调用我们自定义的类加载器中的findeClass函数,因此我们必须要在loadClass这个函数里面实现将一个指定类名称转换为Class对象.

    如果是是读取一个指定的名称的类为字节数组的话,这很好办。但是如何将字节数组转为Class对象呢?很简单,Java提供了defineClass方法,通过这个方法,就可以把一个字节数组转为Class对象啦~

    2.1.1 defineClass

    defineClass主要的功能是:

    将一个字节数组转为Class对象,这个字节数组是class文件读取后最终的字节数组。如,假设class文件是加密过的,则需要解密后作为形参传入defineClass函数。

    defineClass默认实现如下:

    protected final Class<?> defineClass(String name, byte[] b, int off, int len)
            throws ClassFormatError  {
            return defineClass(name, b, off, len, null);
    }

    2.2 函数调用过程

    上一节所提的函数调用过程如下:


    自定义函数调用过程

    2.3 简单示例

    首先,我们定义一个待加载的普通Java类:Test.java。放在com.huachao.cl包下:

    复制代码
    package com.huachao.cl;
    
    public class Test {
        public void hello() {
            System.out.println("恩,是的,我是由 " + getClass().getClassLoader().getClass()
                    + " 加载进来的");
        }
    }
    复制代码

    注意:

    如果你是直接在当前项目里面创建,待Test.java编译后,请把Test.class文件拷贝走,再将Test.java删除。因为如果Test.class存放在当前项目中,根据双亲委派模型可知,会通过sun.misc.Launcher$AppClassLoader 类加载器加载。为了让我们自定义的类加载器加载,我们把Test.class文件放入到其他目录。

    在本例中,我们Test.class文件存放的目录如下:


    class文件目录

    接下来就是自定义我们的类加载器:

    复制代码
    import java.io.FileInputStream;
    import java.lang.reflect.Method;
    
    public class Main {
        static class MyClassLoader extends ClassLoader {
            private String classPath;
    
            public MyClassLoader(String classPath) {
                this.classPath = classPath;
            }
    
            private byte[] loadByte(String name) throws Exception {
                name = name.replaceAll("\.", "/");
                FileInputStream fis = new FileInputStream(classPath + "/" + name
                        + ".class");
                int len = fis.available();
                byte[] data = new byte[len];
                fis.read(data);
                fis.close();
                return data;
    
            }
    
            protected Class<?> findClass(String name) throws ClassNotFoundException {
                try {
                    byte[] data = loadByte(name);
                    return defineClass(name, data, 0, data.length);
                } catch (Exception e) {
                    e.printStackTrace();
                    throw new ClassNotFoundException();
                }
            }
    
        };
    
        public static void main(String args[]) throws Exception {
            MyClassLoader classLoader = new MyClassLoader("D:/test");
            Class clazz = classLoader.loadClass("com.huachao.cl.Test");
            Object obj = clazz.newInstance();
            Method helloMethod = clazz.getDeclaredMethod("hello", null);
            helloMethod.invoke(obj, null);
        }
    }
    复制代码

    运行结果如下:

    恩,是的,我是由 class Main$MyClassLoader 加载进来的

    3. 类加载器详解

    3.1 类加载器基本概念

      顾名思义,类加载器(class loader)用来加载 Java 类到 Java 虚拟机中。一般来说,Java 虚拟机使用 Java 类的方式如下:Java 源程序(.java 文件)在经过 Java 编译器编译之后就被转换成 Java 字节代码(.class 文件)。类加载器负责读取 Java 字节代码,并转换成 java.lang.Class 类的一个实例。每个这样的实例用来表示一个 Java 类。通过此实例的 newInstance()方法就可以创建出该类的一个对象。实际的情况可能更加复杂,比如 Java 字节代码可能是通过工具动态生成的,也可能是通过网络下载的。

      基本上所有的类加载器都是 java.lang.ClassLoader 类的一个实例。下面详细介绍这个 Java 类。

      java.lang.ClassLoader 类介绍

      java.lang.ClassLoader 类的基本职责就是根据一个指定的类的名称,找到或者生成其对应的字节代码,然后从这些字节代码中定义出一个 Java 类,即 java.lang.Class 类的一个实例。除此之外,ClassLoader 还负责加载 Java 应用所需的资源,如图像文件和配置文件等。不过本文只讨论其加载类的功能。为了完成加载类的这个职责,ClassLoader 提供了一系列的方法,比较重要的方法如 表 1 所示。关于这些方法的细节会在下面进行介绍。

      表 1. ClassLoader 中与加载类相关的方法

      方法 说明

      getParent() 返回该类加载器的父类加载器。

      loadClass(String name) 加载名称为 name 的类,返回的结果是 java.lang.Class 类的实例。

      findClass(String name) 查找名称为 name 的类,返回的结果是 java.lang.Class 类的实例。

      findLoadedClass(String name) 查找名称为 name 的已经被加载过的类,返回的结果是 java.lang.Class 类的实例。

      defineClass(String name, byte[] b, int off, int len) 把字节数组 b 中的内容转换成 Java 类,返回的结果是 java.lang.Class 类的实例。这个方法被声明为 final 的。

      resolveClass(Class<?> c) 链接指定的 Java 类。

      对于 表 1 中给出的方法,表示类名称的 name 参数的值是类的二进制名称。需要注意的是内部类的表示,如 com.example.Sample$1 和 com.example.Sample$Inner 等表示方式。这些方法会在下面介绍类加载器的工作机制时,做进一步的说明。下面介绍类加载器的树状组织结构。

    3.2 类加载器的树状组织结构

      Java 中的类加载器大致可以分成两类,一类是系统提供的,另外一类则是由 Java 应用开发人员编写的。系统提供的类加载器主要有下面三个:

      引导类加载器(bootstrap class loader):它用来加载 Java 的核心库,是用原生代码来实现的,并不继承自 java.lang.ClassLoader。

      扩展类加载器(extensions class loader):它用来加载 Java 的扩展库。Java 虚拟机的实现会提供一个扩展库目录。该类加载器在此目录里面查找并加载 Java 类。

      系统类加载器(system class loader):它根据 Java 应用的类路径(CLASSPATH)来加载 Java 类。一般来说,Java 应用的类都是由它来完成加载的。可以通过 ClassLoader.getSystemClassLoader() 来获取它。

      除了系统提供的类加载器以外,开发人员可以通过继承 java.lang.ClassLoader 类的方式实现自己的类加载器,以满足一些特殊的需求。

      除了引导类加载器之外,所有的类加载器都有一个父类加载器。通过 表 1 中给出的 getParent() 方法可以得到。对于系统提供的类加载器来说,系统类加载器的父类加载器是扩展类加载器,而扩展类加载器的父类加载器是引导类加载器;对于开发人员编写的类加载器来说,其父类加载器是加载此类加载器 Java 类的类加载器。因为类加载器 Java 类如同其它的 Java 类一样,也是要由类加载器来加载的。一般来说,开发人员编写的类加载器的父类加载器是系统类加载器。类加载器通过这种方式组织起来,形成树状结构。树的根节点就是引导类加载器。图 1 中给出了一个典型的类加载器树状组织结构示意图,其中的箭头指向的是父类加载器。

      图 1. 类加载器树状组织结构示意图

      代码清单 1 演示了类加载器的树状组织结构。

      清单 1. 演示类加载器的树状组织结构

    Java代码 复制代码
    1. public class ClassLoaderTree {   
    2.   
    3.     public static void main(String[] args) {   
    4.         ClassLoader loader = ClassLoaderTree.class.getClassLoader();   
    5.   
    6.         while (loader != null) {   
    7.             System.out.println(loader.toString());   
    8.             loader = loader.getParent();   
    9.         }   
    10.     }   
    11. }    

      每个 Java 类都维护着一个指向定义它的类加载器的引用,通过 getClassLoader() 方法就可以获取到此引用。代码清单 1 中通过递归调用 getParent() 方法来输出全部的父类加载器。代码清单 1 的运行结果如 代码清单 2 所示。

      清单 2. 演示类加载器的树状组织结构的运行结果

      sun.misc.Launcher$AppClassLoader@9304b1

      sun.misc.Launcher$ExtClassLoader@190d11

      如 代码清单 2 所示,第一个输出的是 ClassLoaderTree 类的类加载器,即系统类加载器。它是 sun.misc.Launcher$AppClassLoader 类的实例;第二个输出的是扩展类加载器,是 sun.misc.Launcher$ExtClassLoader 类的实例。需要注意的是这里并没有输出引导类加载器,这是由于有些 JDK 的实现对于父类加载器是引导类加载器的情况,getParent() 方法返回 null。

      在了解了类加载器的树状组织结构之后,下面介绍类加载器的代理模式。

    3.3 类加载器的代理模式

      类加载器在尝试自己去查找某个类的字节代码并定义它时,会先代理给其父类加载器,由父类加载器先去尝试加载这个类,依次类推。在介绍代理模式背后的动机之前,首先需要说明一下 Java 虚拟机是如何判定两个 Java 类是相同的。Java 虚拟机不仅要看类的全名是否相同,还要看加载此类的类加载器是否一样。只有两者都相同的情况,才认为两个类是相同的。即便是同样的字节代码,被不同的类加载器加载之后所得到的类,也是不同的。比如一个 Java 类 com.example.Sample,编译之后生成了字节代码文件 Sample.class。两个不同的类加载器 ClassLoaderA 和 ClassLoaderB 分别读取了这个 Sample.class 文件,并定义出两个 java.lang.Class 类的实例来表示这个类。这两个实例是不相同的。对于 Java 虚拟机来说,它们是不同的类。试图对这两个类的对象进行相互赋值,会抛出运行时异常 ClassCastException。下面通过示例来具体说明。代码清单 3 中给出了 Java 类 com.example.Sample。

      清单 3. com.example.Sample 类

    Java代码 复制代码
    1. public class Sample {   
    2.     private Sample instance;   
    3.   
    4.     public void setSample(Object instance) {   
    5.         this.instance = (Sample) instance;   
    6.     }   
    7.   
    8. }   

      如 代码清单 3 所示,com.example.Sample 类的方法 setSample 接受一个 java.lang.Object 类型的参数,并且会把该参数强制转换成 com.example.Sample 类型。测试 Java 类是否相同的代码如 代码清单 4 所示。

      清单 4. 测试 Java 类是否相同

    1. public void testClassIdentity() {  
    2.         String classDataRootPath = "D:\workspace\normalTools\bin";   
    3.         FileSystemClassLoader fscl1 = new FileSystemClassLoader(classDataRootPath);   
    4.         FileSystemClassLoader fscl2 = new FileSystemClassLoader(classDataRootPath);   
    5.         String className = "com.koubei.test.load.Sample";   
    6.         try {   
    7.             Class<?> class1 = fscl1.findClass(className);   
    8.             Object obj1 = class1.newInstance();   
    9.             Class<?> class2 = fscl2.findClass(className);   
    10.             Object obj2 = class2.newInstance();   
    11.             Method setSampleMethod = class1.getMethod("setSample", java.lang.Object.class);   
    12.             setSampleMethod.invoke(obj1, obj2);   
    13.         }  
    14.         catch(Exception e){  
    15.             e.printStackTrace();  
    16.         }  
    17.         

     代码清单 4 中使用了类 FileSystemClassLoader 的两个不同实例来分别加载类 com.example.Sample,得到了两个不同的 java.lang.Class 的实例,接着通过 newInstance() 方法分别生成了两个类的对象 obj1 和 obj2,最后通过 Java 的反射 API 在对象 obj1 上调用方法 setSample,试图把对象 obj2 赋值给 obj1 内部的 instance 对象。代码清单 4 的运行结果如 代码清单 5 所示。

      清单 5. 测试 Java 类是否相同的运行结果

      java.lang.reflect.InvocationTargetException

      at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

      at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

      at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)

      at java.lang.reflect.Method.invoke(Method.java:597)

      at classloader.ClassIdentity.testClassIdentity(ClassIdentity.java:26)

      at classloader.ClassIdentity.main(ClassIdentity.java:9)

      Caused by: java.lang.ClassCastException: com.example.Sample

      cannot be cast to com.example.Sample

      at com.example.Sample.setSample(Sample.java:7)

      ... 6 more

      从 代码清单 5 给出的运行结果可以看到,运行时抛出了 java.lang.ClassCastException 异常。虽然两个对象 obj1 和 obj2 的类的名字相同,但是这两个类是由不同的类加载器实例来加载的,因此不被 Java 虚拟机认为是相同的。

      了解了这一点之后,就可以理解代理模式的设计动机了。代理模式是为了保证 Java 核心库的类型安全。所有 Java 应用都至少需要引用 java.lang.Object 类,也就是说在运行的时候,java.lang.Object 这个类需要被加载到 Java 虚拟机中。如果这个加载过程由 Java 应用自己的类加载器来完成的话,很可能就存在多个版本的 java.lang.Object 类,而且这些类之间是不兼容的。通过代理模式,对于 Java 核心库的类的加载工作由引导类加载器来统一完成,保证了 Java 应用所使用的都是同一个版本的 Java 核心库的类,是互相兼容的。

      不同的类加载器为相同名称的类创建了额外的名称空间。相同名称的类可以并存在 Java 虚拟机中,只需要用不同的类加载器来加载它们即可。不同类加载器加载的类之间是不兼容的,这就相当于在 Java 虚拟机内部创建了一个个相互隔离的 Java 类空间。这种技术在许多框架中都被用到,后面会详细介绍。

      下面具体介绍类加载器加载类的详细过程。

    3.4 加载类的过程

      在前面介绍类加载器的代理模式的时候,提到过类加载器会首先代理给其它类加载器来尝试加载某个类。这就意味着真正完成类的加载工作的类加载器和启动这个加载过程的类加载器,有可能不是同一个。真正完成类的加载工作是通过调用 defineClass 来实现的;而启动类的加载过程是通过调用 loadClass 来实现的。前者称为一个类的定义加载器(defining loader),后者称为初始加载器(initiating loader)。在 Java 虚拟机判断两个类是否相同的时候,使用的是类的定义加载器。也就是说,哪个类加载器启动类的加载过程并不重要,重要的是最终定义这个类的加载器。两种类加载器的关联之处在于:一个类的定义加载器是它引用的其它类的初始加载器。如类 com.example.Outer 引用了类 com.example.Inner,则由类 com.example.Outer 的定义加载器负责启动类 com.example.Inner 的加载过程。

      方法 loadClass() 抛出的是 java.lang.ClassNotFoundException 异常;方法 defineClass() 抛出的是 java.lang.NoClassDefFoundError 异常。

      类加载器在成功加载某个类之后,会把得到的 java.lang.Class 类的实例缓存起来。下次再请求加载该类的时候,类加载器会直接使用缓存的类的实例,而不会尝试再次加载。也就是说,对于一个类加载器实例来说,相同全名的类只加载一次,即 loadClass 方法不会被重复调用。

    4.线程上下文类加载器

      线程上下文类加载器(context class loader)是从 JDK 1.2 开始引入的。类 java.lang.Thread 中的方法 getContextClassLoader() 和 setContextClassLoader(ClassLoader cl) 用来获取和设置线程的上下文类加载器。如果没有通过 setContextClassLoader(ClassLoader cl) 方法进行设置的话,线程将继承其父线程的上下文类加载器。Java 应用运行的初始线程的上下文类加载器是系统类加载器。在线程中运行的代码可以通过此类加载器来加载类和资源。

      前面提到的类加载器的代理模式并不能解决 Java 应用开发中会遇到的类加载器的全部问题。Java 提供了很多服务提供者接口(Service Provider Interface,SPI),允许第三方为这些接口提供实现。常见的 SPI 有 JDBC、JCE、JNDI、JAXP 和 JBI 等。这些 SPI 的接口由 Java 核心库来提供,如 JAXP 的 SPI 接口定义包含在 javax.xml.parsers 包中。这些 SPI 的实现代码很可能是作为 Java 应用所依赖的 jar 包被包含进来,可以通过类路径(CLASSPATH)来找到,如实现了 JAXP SPI 的 Apache Xerces 所包含的 jar 包。SPI 接口中的代码经常需要加载具体的实现类。如 JAXP 中的 javax.xml.parsers.DocumentBuilderFactory 类中的 newInstance() 方法用来生成一个新的 DocumentBuilderFactory 的实例。这里的实例的真正的类是继承自 javax.xml.parsers.DocumentBuilderFactory,由 SPI 的实现所提供的。如在 Apache Xerces 中,实现的类是 org.apache.xerces.jaxp.DocumentBuilderFactoryImpl。而问题在于,SPI 的接口是 Java 核心库的一部分,是由引导类加载器来加载的;SPI 实现的 Java 类一般是由系统类加载器来加载的。引导类加载器是无法找到 SPI 的实现类的,因为它只加载 Java 的核心库。它也不能代理给系统类加载器,因为它是系统类加载器的祖先类加载器。也就是说,类加载器的代理模式无法解决这个问题。

      线程上下文类加载器正好解决了这个问题。如果不做任何的设置,Java 应用的线程的上下文类加载器默认就是系统上下文类加载器。在 SPI 接口的代码中使用线程上下文类加载器,就可以成功的加载到 SPI 实现的类。线程上下文类加载器在很多 SPI 的实现中都会用到。

      下面介绍另外一种加载类的方法:Class.forName。

      Class.forName

      Class.forName 是一个静态方法,同样可以用来加载类。该方法有两种形式:Class.forName(String name, boolean initialize, ClassLoader loader) 和 Class.forName(String className)。第一种形式的参数 name 表示的是类的全名;initialize 表示是否初始化类;loader 表示加载时使用的类加载器。第二种形式则相当于设置了参数 initialize 的值为 true,loader 的值为当前类的类加载器。Class.forName 的一个很常见的用法是在加载数据库驱动的时候。如 Class.forName("org.apache.derby.jdbc.EmbeddedDriver").newInstance() 用来加载 Apache Derby 数据库的驱动。

      在介绍完类加载器相关的基本概念之后,下面介绍如何开发自己的类加载器。

      开发自己的类加载器

      虽然在绝大多数情况下,系统默认提供的类加载器实现已经可以满足需求。但是在某些情况下,您还是需要为应用开发出自己的类加载器。比如您的应用通过网络来传输 Java 类的字节代码,为了保证安全性,这些字节代码经过了加密处理。这个时候您就需要自己的类加载器来从某个网络地址上读取加密后的字节代码,接着进行解密和验证,最后定义出要在 Java 虚拟机中运行的类来。下面将通过两个具体的实例来说明类加载器的开发。

    5、文件系统类加载器

      第一个类加载器用来加载存储在文件系统上的 Java 字节代码。完整的实现如 代码清单 6 所示。

      清单 6. 文件系统类加载器

    Java代码 复制代码
    1. public class FileSystemClassLoader extends ClassLoader {   
    2.   
    3.     private String rootDir;   
    4.   
    5.     public FileSystemClassLoader(String rootDir) {   
    6.         this.rootDir = rootDir;   
    7.     }   
    8.   
    9.     protected Class<?> findClass(String name) throws ClassNotFoundException {   
    10.         byte[] classData = getClassData(name);   
    11.         if (classData == null) {   
    12.             throw new ClassNotFoundException();   
    13.         } else {   
    14.             return defineClass(name, classData, 0, classData.length);   
    15.         }   
    16.     }   
    17.   
    18.     private byte[] getClassData(String className) {   
    19.         String path = classNameToPath(className);   
    20.   
    21.         try {   
    22.             InputStream ins = new FileInputStream(path);   
    23.             ByteArrayOutputStream baos = new ByteArrayOutputStream();   
    24.             int bufferSize = 4096;   
    25.             byte[] buffer = new byte[bufferSize];   
    26.             int bytesNumRead = 0;   
    27.             while ((bytesNumRead = ins.read(buffer)) != -1) {   
    28.                 baos.write(buffer, 0, bytesNumRead);   
    29.             }   
    30.   
    31.             return baos.toByteArray();   
    32.         } catch (IOException e) {   
    33.             e.printStackTrace();   
    34.         }   
    35.         return null;   
    36.     }   
    37.   
    38.     private String classNameToPath(String className) {   
    39.         return rootDir + File.separatorChar   
    40.             + className.replace('.', File.separatorChar) + ".class";   
    41.     }   
    42. }     

    如 代码清单 6 所示,类 FileSystemClassLoader 继承自类 java.lang.ClassLoader。在 表 1 中列出的 java.lang.ClassLoader 类的常用方法中,一般来说,自己开发的类加载器只需要覆写 findClass(String name) 方法即可。java.lang.ClassLoader 类的方法 loadClass() 封装了前面提到的代理模式的实现。该方法会首先调用 findLoadedClass() 方法来检查该类是否已经被加载过;如果没有加载过的话,会调用父类加载器的 loadClass() 方法来尝试加载该类;如果父类加载器无法加载该类的话,就调用 findClass() 方法来查找该类。因此,为了保证类加载器都正确实现代理模式,在开发自己的类加载器时,最好不要覆写 loadClass() 方法,而是覆写 findClass() 方法。

      类 FileSystemClassLoader 的 findClass() 方法首先根据类的全名在硬盘上查找类的字节代码文件(.class 文件),然后读取该文件内容,最后通过 defineClass() 方法来把这些字节代码转换成 java.lang.Class 类的实例。

    6、网络类加载器

      下面将通过一个网络类加载器来说明如何通过类加载器来实现组件的动态更新。即基本的场景是:Java 字节代码(.class)文件存放在服务器上,客户端通过网络的方式获取字节代码并执行。当有版本更新的时候,只需要替换掉服务器上保存的文件即可。通过类加载器可以比较简单的实现这种需求。

      类 NetworkClassLoader 负责通过网络下载 Java 类字节代码并定义出 Java 类。它的实现与 FileSystemClassLoader 类似。在通过 NetworkClassLoader 加载了某个版本的类之后,一般有两种做法来使用它。第一种做法是使用 Java 反射 API。另外一种做法是使用接口。需要注意的是,并不能直接在客户端代码中引用从服务器上下载的类,因为客户端代码的类加载器找不到这些类。使用 Java 反射 API 可以直接调用 Java 类的方法。而使用接口的做法则是把接口的类放在客户端中,从服务器上加载实现此接口的不同版本的类。在客户端通过相同的接口来使用这些实现类。网络类加载器的具体代码见 下载。

      在介绍完如何开发自己的类加载器之后,下面说明类加载器和 Web 容器的关系。

      类加载器与 Web 容器

      对于运行在 Java EE? 容器中的 Web 应用来说,类加载器的实现方式与一般的 Java 应用有所不同。不同的 Web 容器的实现方式也会有所不同。以 Apache Tomcat 来说,每个 Web 应用都有一个对应的类加载器实例。该类加载器也使用代理模式,所不同的是它是首先尝试去加载某个类,如果找不到再代理给父类加载器。这与一般类加载器的顺序是相反的。这是 Java Servlet 规范中的推荐做法,其目的是使得 Web 应用自己的类的优先级高于 Web 容器提供的类。这种代理模式的一个例外是:Java 核心库的类是不在查找范围之内的。这也是为了保证 Java 核心库的类型安全。

      绝大多数情况下,Web 应用的开发人员不需要考虑与类加载器相关的细节。下面给出几条简单的原则:

      每个 Web 应用自己的 Java 类文件和使用的库的 jar 包,分别放在 WEB-INF/classes 和 WEB-INF/lib 目录下面。

      多个应用共享的 Java 类文件和 jar 包,分别放在 Web 容器指定的由所有 Web 应用共享的目录下面。

      当出现找不到类的错误时,检查当前类的类加载器和当前线程的上下文类加载器是否正确。

      在介绍完类加载器与 Web 容器的关系之后,下面介绍它与 OSGi 的关系。

    7、类加载器与 OSGi

      OSGi? 是 Java 上的动态模块系统。它为开发人员提供了面向服务和基于组件的运行环境,并提供标准的方式用来管理软件的生命周期。OSGi 已经被实现和部署在很多产品上,在开源社区也得到了广泛的支持。Eclipse 就是基于 OSGi 技术来构建的。

      OSGi 中的每个模块(bundle)都包含 Java 包和类。模块可以声明它所依赖的需要导入(import)的其它模块的 Java 包和类(通过 Import-Package),也可以声明导出(export)自己的包和类,供其它模块使用(通过 Export-Package)。也就是说需要能够隐藏和共享一个模块中的某些 Java 包和类。这是通过 OSGi 特有的类加载器机制来实现的。OSGi 中的每个模块都有对应的一个类加载器。它负责加载模块自己包含的 Java 包和类。当它需要加载 Java 核心库的类时(以 java 开头的包和类),它会代理给父类加载器(通常是启动类加载器)来完成。当它需要加载所导入的 Java 类时,它会代理给导出此 Java 类的模块来完成加载。模块也可以显式的声明某些 Java 包和类,必须由父类加载器来加载。只需要设置系统属性 org.osgi.framework.bootdelegation 的值即可。

      假设有两个模块 bundleA 和 bundleB,它们都有自己对应的类加载器 classLoaderA 和 classLoaderB。在 bundleA 中包含类 com.bundleA.Sample,并且该类被声明为导出的,也就是说可以被其它模块所使用的。bundleB 声明了导入 bundleA 提供的类 com.bundleA.Sample,并包含一个类 com.bundleB.NewSample 继承自 com.bundleA.Sample。在 bundleB 启动的时候,其类加载器 classLoaderB 需要加载类 com.bundleB.NewSample,进而需要加载类 com.bundleA.Sample。由于 bundleB 声明了类 com.bundleA.Sample 是导入的,classLoaderB 把加载类 com.bundleA.Sample 的工作代理给导出该类的 bundleA 的类加载器 classLoaderA。classLoaderA 在其模块内部查找类 com.bundleA.Sample 并定义它,所得到的类 com.bundleA.Sample 实例就可以被所有声明导入了此类的模块使用。对于以 java 开头的类,都是由父类加载器来加载的。如果声明了系统属性 org.osgi.framework.bootdelegation=com.example.core.*,那么对于包 com.example.core 中的类,都是由父类加载器来完成的。

      OSGi 模块的这种类加载器结构,使得一个类的不同版本可以共存在 Java 虚拟机中,带来了很大的灵活性。不过它的这种不同,也会给开发人员带来一些麻烦,尤其当模块需要使用第三方提供的库的时候。下面提供几条比较好的建议:

      如果一个类库只有一个模块使用,把该类库的 jar 包放在模块中,在 Bundle-ClassPath 中指明即可。

      如果一个类库被多个模块共用,可以为这个类库单独的创建一个模块,把其它模块需要用到的 Java 包声明为导出的。其它模块声明导入这些类。

      如果类库提供了 SPI 接口,并且利用线程上下文类加载器来加载 SPI 实现的 Java 类,有可能会找不到 Java 类。如果出现了 NoClassDefFoundError 异常,首先检查当前线程的上下文类加载器是否正确。通过 Thread.currentThread().getContextClassLoader() 就可以得到该类加载器。该类加载器应该是该模块对应的类加载器。如果不是的话,可以首先通过 class.getClassLoader() 来得到模块对应的类加载器,再通过 Thread.currentThread().setContextClassLoader() 来设置当前线程的上下文类加载器。

      总结

      类加载器是 Java 语言的一个创新。它使得动态安装和更新软件组件成为可能。本文详细介绍了类加载器的相关话题,包括基本概念、代理模式、线程上下文类加载器、与 Web 容器和 OSGi 的关系等。开发人员在遇到 ClassNotFoundException 和 NoClassDefFoundError 等异常的时候,应该检查抛出异常的类的类加载器和当前线程的上下文类加载器,从中可以发现问题的所在。在开发自己的类加载器的时候,需要注意与已有的类加载器组织结构的协调。

     
  • 相关阅读:
    回想四叉树LOD地形(上)
    项目优化经验分享(四)需求与原型图
    CF79D Password
    2018-3-7-VisualStudio-csproj-添加-ItemGroup-的-Service-
    2018-3-7-VisualStudio-csproj-添加-ItemGroup-的-Service-
    2018-8-10-如何入门-C++-AMP-教程
    2018-8-10-如何入门-C++-AMP-教程
    2019-11-6-Roslyn-how-to-use-WriteLinesToFile-to-write-the-semicolons-to-file
    2019-11-6-Roslyn-how-to-use-WriteLinesToFile-to-write-the-semicolons-to-file
    2019-1-4-win10-uwp-win2d-CanvasVirtualControl-与-CanvasAnimatedControl
  • 原文地址:https://www.cnblogs.com/Genesisx/p/9260266.html
Copyright © 2020-2023  润新知