• 武汉大学2009年数学分析试题解答


    武汉大学2009年数学分析试题解答

    一.1.解$underset{n o infty }{mathop{lim }}\,left( frac{1}{1+2}+frac{1}{1+2+3}+cdots +frac{1}{1+2+cdots +n} ight) $

    $=underset{n o infty }{mathop{lim }}\,sumlimits_{k=2}^{n}{frac{2}{kleft( k+1 ight)}} $$=2underset{n o infty }{mathop{lim }}\,left( frac{1}{2}-frac{1}{n+1} ight)=1$;

    2.解 $underset{x o 0}{mathop{lim }}\,frac{int_{0}^{x}{left( x-t ight)sin {{t}^{2}}dt}}{xint_{0}^{x}{sin {{t}^{2}}dt}}$

    $=underset{x o 0}{mathop{lim }}\,frac{xint_{0}^{x}{sin {{t}^{2}}dt}-int_{0}^{x}{tsin {{t}^{2}}dt}}{xint_{0}^{x}{sin {{t}^{2}}dt}}$

    $=underset{x o 0}{mathop{lim }}\,frac{int_{0}^{x}{sin {{t}^{2}}dt}}{int_{0}^{x}{sin {{t}^{2}}dt}+xsin {{x}^{2}}}$

    $=underset{x o 0}{mathop{lim }}\,frac{sin {{x}^{2}}}{sin {{x}^{2}}+sin {{x}^{2}}+2{{x}^{2}}cos {{x}^{2}}}$

    $=underset{x o 0}{mathop{lim }}\,frac{frac{sin {{x}^{2}}}{{{x}^{2}}}}{frac{2sin {{x}^{2}}}{{{x}^{2}}}+2cos {{x}^{2}}}=frac{1}{4}$;

    3.解 因为$sin t=sumlimits_{n=0}^{infty }{frac{{{left( -1 ight)}^{n}}}{left( 2n+1 ight)!}{{t}^{2n+1}}}$,

    $Fleft( x ight)=frac{1}{x}int_{0}^{x}{frac{sin t}{t}dt}$$=frac{1}{x}int_{0}^{x}{sumlimits_{n=0}^{infty }{frac{{{left( -1 ight)}^{n}}}{left( 2n+1 ight)!}{{t}^{2n}}}dt}$

       $=frac{1}{x}sumlimits_{n=0}^{infty }{frac{{{left( -1 ight)}^{n}}}{left( 2n+1 ight)!}frac{1}{left( 2n+1 ight)}{{x}^{2n+1}}}$

       $=sumlimits_{n=0}^{infty }{frac{{{left( -1 ight)}^{n}}}{{{left( 2n+1 ight)}^{2}}left( 2n ight)!}{{x}^{2n}}}$,

    于是${{F}^{left( 2n ight)}}left( 0 ight)=frac{{{left( -1 ight)}^{n}}}{{{left( 2n+1 ight)}^{2}}}$,${{F}^{left( 2n-1 ight)}}left( 0 ight)=0$,

    所以${{F}^{left( 4 ight)}}left( 0 ight)=frac{1}{25}$,${{F}^{left( 9 ight)}}left( 0 ight)=0$.

    4. $frac{partial z}{partial x}=-frac{left( yz+xyz ight){{e}^{x+y+z}}}{left( xy+xyz ight){{e}^{x+y+z}}}=-frac{zleft( 1+x ight)}{xleft( 1+z ight)}=-frac{1+frac{1}{x}}{1+frac{1}{z}}$,$frac{partial z}{partial y}=-frac{1+frac{1}{y}}{1+frac{1}{z}}$;

    $frac{{{partial }^{2}}z}{partial {{x}^{2}}}=frac{frac{1}{{{x}^{2}}}left( 1+frac{1}{z} ight)-frac{{{z}_{x}}}{{{z}^{2}}}left( 1+frac{1}{x} ight)}{{{left( 1+frac{1}{z} ight)}^{2}}}$$=frac{zleft[ {{left( 1+z ight)}^{2}}+{{left( 1+x ight)}^{2}} ight]}{{{x}^{2}}{{left( 1+z ight)}^{3}}}$;

    $frac{{{partial }^{2}}z}{partial xpartial y}=frac{frac{{{z}_{y}}}{{{z}^{2}}}left( 1+frac{1}{x} ight)}{{{left( 1+frac{1}{z} ight)}^{2}}}=frac{zleft( 1+x ight)left( 1+y ight)}{xy{{left( 1+z ight)}^{3}}}$.

    5.解 $iintlimits_{D}{ln frac{{{x}^{3}}}{y}dxdy}$$=int_{1}^{2}{dxint_{1}^{x}{3ln xdy}}-int_{1}^{2}{dyint_{y}^{2}{ln ydx}}$

    $=3int_{1}^{2}{left( x-1 ight)ln xdx}-int_{1}^{2}{left( 2-y ight)ln ydy}$

    $=int_{1}^{2}{left( 4x-5 ight)ln xdx}$

    $=int_{1}^{2}{{{left( 2{{x}^{2}}-5x ight)}^{prime }}ln xdx}$

    $=left. left[ left( 2{{x}^{2}}-5x ight)ln x-left( {{x}^{2}}-5x ight) ight] ight|_{1}^{2}$

    $=-2ln 2+2$.

    二.证明:对于每一个$xin left[ 0,1 ight] $,由于$left{ {{I}_{u}} ight}$覆盖了$left[ 0,1 ight] $,

    存在${{I}_{{{u}_{x}}}}in left{ {{I}_{u}} ight}$,使得$xin {{I}_{{{u}_{x}}}}$,

    又由${{I}_{{{u}_{x}}}}$是开区间,存在${{delta }_{x}}>0$,

    使得$xin Uleft( x,{{delta }_{x}} ight)subset Uleft( x,2{{delta }_{x}} ight)subset {{I}_{{{u}_{x}}}}$,

    显然开集族$left{ Uleft( x,{{delta }_{x}} ight):xin left[ 0,1 ight] ight}$亦覆盖了区间$left[ 0,1 ight] $,

    根据有限覆盖定理,

    存在有限个${{x}_{1}},{{x}_{2}},cdots ,{{x}_{N}}$,使得

    $Uleft( {{x}_{1}},{{delta }_{{{x}_{1}}}} ight),Uleft( {{x}_{2}},{{delta }_{{{x}_{2}}}} ight),cdots ,Uleft( {{x}_{N}},{{delta }_{{{x}_{N}}}} ight) $就能覆盖了$left[ 0,1 ight] $,

    取$delta =min left{ {{delta }_{{{x}_{1}}}},{{delta }_{{{x}_{2}}}},cdots ,{{delta }_{{{x}_{N}}}} ight}$,

    对任意${{y}_{1}},{{y}_{2}}in left[ 0,1 ight] $,

    当$left| {{y}_{1}}-{{y}_{2}} ight|<delta $时,

    存在$Uleft( {{x}_{k}},{{delta }_{{{x}_{k}}}} ight) $,有${{y}_{1}}in Uleft( {{x}_{k}},{{delta }_{{{x}_{k}}}} ight) $,

    $left| {{y}_{2}}-{{x}_{k}} ight|le left| {{y}_{1}}-{{y}_{2}} ight|+left| {{y}_{1}}-{{x}_{k}} ight|<delta +{{delta }_{{{x}_{k}}}}le 2{{delta }_{{{x}_{k}}}}$,

    于是${{y}_{1}},{{y}_{2}}in Uleft( {{x}_{k}},2{{delta }_{{{x}_{k}}}} ight)subset {{I}_{{{u}_{{{x}_{k}}}}}}$,

    结论得证.

    (2)例如$left{ left( frac{1}{n+1},frac{1}{n} ight) ight}$是$left( 0,1 ight) $的一个开覆盖,就没有这个性质.

    三.证明 用反证法,假设结果不真,

    存在$M>0$,使得${f}'left( x ight)le M$,$xin left( a-delta ,a ight) $.

    对任意$a-delta <x<y<a$,

    由Lagrange中值定理,

    $fleft( y ight)=fleft( x ight)+{f}'left( xi  ight)left( y-x ight) $

        $le fleft( x ight)+Mleft( y-x ight)le fleft( x ight)+Ma$,

    从而$fleft( x ight) $在$a$的某个左邻域内有上界,这与$fleft( {{a}^{-}} ight)=+infty $矛盾,

    所以命题成立.

    四.解 $D=left{ left( x,y ight):{{x}^{2}}+{{y}^{2}}le y,xge 0 ight}$,

    $D=left{ left( x,y ight):{{x}^{2}}+{{left( y-frac{1}{2} ight)}^{2}}le {{left( frac{1}{2} ight)}^{2}},xge 0 ight}$,

    $sigma left( D ight)=frac{1}{2}pi {{left( frac{1}{2} ight)}^{2}}=frac{pi }{8}$,

    $z=iintlimits_{D}{sqrt{1-{{x}^{2}}-{{y}^{2}}}dxdy}$$=int_{0}^{frac{pi }{2}}{d heta int_{0}^{sin heta }{sqrt{1-{{r}^{2}}}rdr}}$

     $=int_{0}^{frac{pi }{2}}{left. left[ -frac{1}{3}{{left( 1-{{r}^{2}} ight)}^{frac{3}{2}}} ight] ight|_{0}^{sin heta }d heta }$$=frac{1}{3}int_{0}^{frac{pi }{2}}{left( 1-{{cos }^{3}} heta  ight)d heta }$

     $=frac{pi }{6}-frac{1}{3}int_{0}^{frac{pi }{2}}{left( 1-{{sin }^{2}} heta  ight)dsin heta }=frac{pi }{6}-frac{2}{9}$,

    由$iintlimits_{D}{fleft( x,y ight)dxdy}=iintlimits_{D}{sqrt{1-{{x}^{2}}-{{y}^{2}}}dxdy}-frac{8}{pi }iintlimits_{D}{fleft( x,y ight)dxdy}cdot iintlimits_{D}{dxdy}$

                 $=frac{pi }{6}-frac{2}{9}-iintlimits_{D}{fleft( x,y ight)dxdy}$,

    所以$iintlimits_{D}{fleft( x,y ight)dxdy}=frac{pi }{12}-frac{1}{9}$,

    所以$fleft( x,y ight)=sqrt{1-{{x}^{2}}-{{y}^{2}}}-frac{8}{pi }left( frac{pi }{12}-frac{1}{9} ight) $.

    五.解 利用极坐标和$Gauss$公式,$I=iintlimits_{D}{left( frac{x}{sqrt{{{x}^{2}}+{{y}^{2}}}}frac{partial f}{partial x}+frac{y}{sqrt{{{x}^{2}}+{{y}^{2}}}}frac{partial f}{partial y} ight)dxdy}$

    $=int_{0}^{1}{drint_{0}^{2pi }{left( cos heta {{f}_{x}}+sin heta {{f}_{y}} ight)rd heta }}$$=int_{0}^{1}{drintlimits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{{{f}_{x}}dy-{{f}_{y}}dx}}$

    $=int_{0}^{1}{driintlimits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{left( {{f}_{xx}}+{{f}_{yy}} ight)dxdy}}$$=int_{0}^{1}{driintlimits_{{{x}^{2}}+{{y}^{2}}={{r}^{2}}}{{{left( {{x}^{2}}+{{y}^{2}} ight)}^{2}}dxdy}}$

    $=int_{0}^{1}{drint_{0}^{2pi }{d heta int_{0}^{r}{{{ ho }^{4}} ho d ho }}}$$=2pi cdot frac{1}{6}int_{0}^{1}{{{r}^{6}}dr}$$=2pi cdot frac{1}{6}cdot frac{1}{7}=frac{pi }{21}$.

    六.  证明  因为$underset{n o infty }{mathop{lim }}\,{{a}_{n}}=+infty $,对任给的$A>0$,存在${{N}_{1}}in {{N}^{*}}$,使得凡是$n>{{N}_{1}}$时有${{a}_{n}}>3A$;设$n>{{N}_{1}}$,这时

    $frac{{{a}_{1}}+{{a}_{2}}+cdots +{{a}_{n}}}{n}$$=frac{({{a}_{1}}+cdots +{{a}_{{{N}_{1}}}})+{{a}_{{{N}_{1}}+1}}+cdots +{{a}_{n}}}{n}$

    $>frac{{{a}_{1}}+cdots +{{a}_{{{N}_{1}}}}}{n}+3Afrac{n-{{N}_{1}}}{n}$,又因$frac{{{a}_{1}}+cdots +{{a}_{{{N}_{1}}}}}{n} o 0$,$frac{n-{{N}_{1}}}{n}=1-frac{{{N}_{1}}}{n} o 1$,($n o infty $),

    故可取正整数$N>{{N}_{1}}$,使当$n>N$时,恒有$|frac{{{a}_{1}}+cdots +{{a}_{{{N}_{1}}}}}{n}|<frac{A}{2}$,$frac{n-{{N}_{1}}}{n}=1-frac{{{N}_{1}}}{n}>frac{1}{2}$

    于是,当$n>N$时,恒有$frac{{{a}_{1}}+{{a}_{2}}+cdots +{{a}_{n}}}{n}>A$,由此可知$underset{n o infty }{mathop{lim }}\,frac{{{a}_{1}}+{{a}_{2}}+cdots +{{a}_{n}}}{n}=+infty $ 。

    显然,$underset{n o infty }{mathop{lim }}\,{{a}_{n}}=-infty $等价于$underset{n o infty }{mathop{lim }}\,(-{{a}_{n}})=+infty $ 。

    定理  如果$underset{n o infty }{mathop{lim }}\,{{a}_{n}}=-infty $,则$underset{n o infty }{mathop{lim }}\,frac{{{a}_{1}}+{{a}_{2}}+cdots +{{a}_{n}}}{n}=-infty $。

    七、解 (1)$sumlimits_{n=1}^{infty }{{{u}_{n}}left( x ight)} $,$left[ 0,b ight] $,

    所以${{eta }_{n}}=underset{xin left[ 0,+infty  ight)}{mathop{sup }}\,left| {{u}_{n}}left( x ight) ight|$,$ge {{u}_{n}}left( {{e}^{{{n}^{3}}}} ight)=frac{1}{{{n}^{3}}}ln left( 1+{{n}^{3}}{{e}^{{{n}^{3}}}} ight) $,

    (2)当$ge frac{1}{{{n}^{3}}}ln {{e}^{{{n}^{3}}}}=1$时,$left{ {{u}_{n}}left( x ight) ight}$,

    $left[ 0,+infty  ight) $,

    当$0$不存在,$sumlimits_{n=1}^{infty }{{{u}_{n}}left( x ight)} $在$left[ 0,+infty  ight) $处不连续,

    当$Sleft( x ight) $不存在,$left[ 0,+infty  ight) $在${{{u}'}_{n}}left( x ight)=frac{{{n}^{3}}}{{{n}^{3}}left( 1+{{n}^{3}}x ight)} $处不连续,

    (3)当$sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( 0 ight)} $时,

    $frac{fleft( Delta x,Delta y ight)-left[ f(0,0)+{{f}_{x}}left( 0,0 ight)Delta x+{{f}_{y}}left( 0,0 ight)Delta y ight]}{sqrt{{{left( Delta x ight)}^{2}}+{{left( Delta y ight)}^{2}}}}$

    $0<{{{u}'}_{n}}left( x ight)le frac{1}{{{n}^{3}}x}=frac{1}{x}frac{1}{{{n}^{3}}}$,

    所以$sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( x ight)} $在点$left( 0,+infty  ight) $处可微,且$dfleft( 0,0 ight)=0$ 。

    八.(1)解 $left( frac{partial }{partial x}+frac{partial }{partial y} ight)z=left( x+y ight)frac{partial z}{partial u}$,

    ${{left( frac{partial }{partial x}+frac{partial }{partial y} ight)}^{2}}z=left( frac{partial }{partial x}+frac{partial }{partial y} ight)left( left( x+y ight)frac{partial z}{partial u} ight) $

              $=2frac{partial z}{partial u}+{{left( x+y ight)}^{2}}frac{{{partial }^{2}}z}{partial {{u}^{2}}}$,

    由$x=frac{vpm sqrt{{{v}^{2}}+4u}}{2}$,$y=frac{-vpm sqrt{{{v}^{2}}+4u}}{2}$,

    可知$x+y=sqrt{{{v}^{2}}+4u}$,$frac{{{partial }^{2}}z}{partial {{u}^{2}}}+frac{1}{{{v}^{2}}+4u}frac{partial z}{partial u}=0$.

    (2)由$frac{partial left( u,v ight)}{partial left( x,y ight)}=-left( x+y ight) $,变量在$x+y=0$上失效,因为在此雅克比行列式为$0$.

    九.(1)证明 对任意$b>0$,当$xin left[ 0,b ight] $时,

    $0le {{u}_{n}}left( x ight)=frac{1}{{{n}^{3}}}ln left( 1+{{n}^{3}}x ight) $

           $le frac{1}{{{n}^{3}}}ln left( 1+{{n}^{3}}b ight) $

            $le frac{1}{{{n}^{2}}}frac{1}{n}ln left( 2{{n}^{3}}b ight)=frac{1}{{{n}^{2}}}frac{ln left( 2b ight)+3ln n}{n}$      $left( {{n}^{3}}ge frac{1}{6} ight) $

            $le frac{1}{{{n}^{2}}}$ , ($n$充分大)

    而$sumlimits_{n=1}^{infty }{frac{1}{{{n}^{2}}}}$收敛,所以$sumlimits_{n=1}^{infty }{{{u}_{n}}left( x ight)} $在$left[ 0,b ight] $上是一致收敛的.

    因为${{eta }_{n}}=underset{xin left[ 0,+infty  ight)}{mathop{sup }}\,left| {{u}_{n}}left( x ight) ight|ge {{u}_{n}}left( {{e}^{{{n}^{3}}}} ight)=frac{1}{{{n}^{3}}}ln left( 1+{{n}^{3}}{{e}^{{{n}^{3}}}} ight) $

                      $ge frac{1}{{{n}^{3}}}ln {{e}^{{{n}^{3}}}}=1$,

    所以$left{ {{u}_{n}}left( x ight) ight}$在$left[ 0,+infty  ight) $上不一致收敛于$0$,

    从而$sumlimits_{n=1}^{infty }{{{u}_{n}}left( x ight)} $在$left[ 0,+infty  ight) $上不一致收敛.

    (2)显然$Sleft( x ight) $在$left[ 0,+infty  ight) $上连续,${{{u}'}_{n}}left( x ight)=frac{{{n}^{3}}}{{{n}^{3}}left( 1+{{n}^{3}}x ight)} $,

    显然$sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( 0 ight)} $发散,对于$x>0$,$0<{{{u}'}_{n}}left( x ight)le frac{1}{{{n}^{3}}x}=frac{1}{x}frac{1}{{{n}^{3}}}$,

    可见$sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( x ight)} $在$left( 0,+infty  ight) $上收敛,

    对任意$delta >0$,当$xin left[ delta ,+infty  ight) $时,$0<{{{u}'}_{n}}left( x ight)le frac{1}{{{n}^{3}}x}le frac{1}{delta }frac{1}{{{n}^{3}}}$,

    由此知,$sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( x ight)} $在$left[ delta ,+infty  ight) $上一致收敛,且有${S}'left( x ight)=sumlimits_{n=1}^{infty }{{{{{u}'}}_{n}}left( x ight)} $,

    所以$Sleft( x ight) $在$left[ delta ,+infty  ight) $上连续可微,

    由$delta >0$的任意性,可知,$Sleft( x ight) $在$left( 0,+infty  ight) $上可微

  • 相关阅读:
    Linux bash script block comment All In One
    一道有疑问的小学二年级数学题 All In One
    2022 微软飞行模拟器 中文版 All In One
    HTML5 video controlslist All In One
    Oracle 查询出来的数据取第一条
    js 获取select的值 / js动态给select赋值 jQuery获取
    Repeater隔行变色,两个方式
    layui之动态添加下拉菜单
    myeclipse部署多个应用到不同的weblogic domain中
    .net中LAMBDA表达式常用写法
  • 原文地址:https://www.cnblogs.com/Colgatetoothpaste/p/3670111.html
Copyright © 2020-2023  润新知