• POJ 2955 Brackets 【区间dp】【水题】


    Brackets
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 8027   Accepted: 4264

    Description

    We give the following inductive definition of a “regular brackets” sequence:

    • the empty sequence is a regular brackets sequence,
    • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
    • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
    • no other sequence is a regular brackets sequence

    For instance, all of the following character sequences are regular brackets sequences:

    (), [], (()), ()[], ()[()]

    while the following character sequences are not:

    (, ], )(, ([)], ([(]

    Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1i2, …, im where 1 ≤ i1 < i2 < … < im ≤ nai1ai2 … aim is a regular brackets sequence.

    Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

    Input

    The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters ()[, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

    Output

    For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

    Sample Input

    ((()))
    ()()()
    ([]])
    )[)(
    ([][][)
    end

    Sample Output

    6
    6
    4
    0
    6

    Source


    dp[i][j]表示区间i~j中匹配的个数


    #include<iostream>
    #include<algorithm>
    #include<cmath>
    #include<queue>
    #include<cstring>
    #include<iomanip>
    #define INF 0x3f3f3f3f
    #define ms(a,b) memset(a,b,sizeof(a))
    using namespace std;
    
    const int maxn = 105;
    char s[maxn];
    int dp[maxn][maxn];
    
    bool check(int i, int j)
    {
    	if (s[i] == '('&&s[j] == ')') return 1;
    	if (s[i] == '['&&s[j] == ']') return 1;
    	return 0;
    }
    
    int main()
    {
    	while (~scanf("%s", s + 1))
    	{
    		if (s[1] == 'e') break;
    		ms(dp, 0);
    		int n = strlen(s + 1);
    		for (int i = n; i > 0; i--)
    		{
    			for (int j = i + 1; j <= n; j++)
    			{
    				if (check(i, j)) dp[i][j] = dp[i + 1][j - 1] + 2;
    				for (int k = i; k <= j; k++)
    					dp[i][j] = max(dp[i][j], dp[i][k] + dp[k][j]);
    			}
    		}
    		printf("%d
    ", dp[1][n]);
    	}
    }


    Fighting~
  • 相关阅读:
    【题解】警位安排( 树形 DP)
    【题解】任务分配
    Leo 搭积木
    受牛仰慕的牛
    zy 送画
    [NOIP2010] 乌龟棋
    [WikiOi 1214] 线段覆盖
    【拓扑习题】课程安排问题
    [WikiOI "天梯"1281] Xn数列
    [百度之星2014资格赛] Disk Schedule 报告
  • 原文地址:https://www.cnblogs.com/Archger/p/12774745.html
Copyright © 2020-2023  润新知