要点
- 懒得打公式了,题解
- 把题目要求的复杂公式化简成熟悉的东西,一是看穿前面加个(n!)化为(C_n^i,i为奇数);二是将奇数的条件去掉的数学技巧。
- 形为({(a + bsqrt{B})}^n)的快速幂
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
int T;
ll A, B, n, p;
ll prime[1000005];
void Init() {
for (int i = 1; i <= 1000; i++)
for (int j = i * i; j <= (int)1e6; j += i * i)
prime[j] = i;
}
ll ksm(ll a, ll b, ll n, ll mod) {
ll res = 1, ret = 0;
for (; n; n >>= 1) {
if (n & 1) {
ll t = res, p = ret;
res = (t * a % mod + p * b % mod * B % mod) % mod;
ret = (t * b % mod + p * a % mod) % mod;
}
ll tmp = a;
a = (a * a % mod + b * b % mod * B % mod) % mod;
b = 2LL * tmp % mod * b % mod;
}
return ret;
}
int main() {
ios_base::sync_with_stdio(0), cin.tie(0), cout.tie(0);
Init();
for (cin >> T; T--;) {
cin >> A >> B >> n >> p;
ll u = prime[B];
B = B / (u * u);
cout << 1 << " " << ksm(A, u, n, p) << " " << B << '
';
}
}