• 基于SVM的数字识别


    KNN也能实现数字识别但需要保留所有的训练样本,支持向量机只需要保留支持向量就可以达到类似的效果

    支持向量机本质上是一个二分类器

    代码如下:

    # -*- coding: utf-8 -*-
    #完整版的支持向量机 有核函数
    
    from numpy import *
    from time import sleep
    #导入数据集
    def loadDataSet(fileName):
        dataMat = []
        labelMat = []
        fr = open(fileName)
        for line in fr.readlines():#按行读取
            lineArr = line.strip().split('	')#对每行分割并剔除空格
            dataMat.append([float(lineArr[0]), float(lineArr[1])])
            labelMat.append(float(lineArr[2]))
        return dataMat,labelMat
    #随机选择一个i!=j的数
    def selectJrand(i,m):
        j=i #we want to select any J not equal to i
        while (j==i):
            j = int(random.uniform(0,m))
        return j
    #数值太大太小时调整
    def clipAlpha(aj,H,L):
        if aj > H: 
            aj = H
        if L > aj:
            aj = L
        return aj
    #简化的SMO算法
    #输入参数为(数据集,标签集,常数C,容错率,最大循环次数)
    def smoSimple(dataMatIn, classLabels, C, toler, maxIter):
        dataMatrix = mat(dataMatIn);           #转换为NumPy矩阵类型
        labelMat = mat(classLabels).transpose()#转换为NumPy矩阵类型,并求转置
        b = 0; 
        m,n = shape(dataMatrix)    #求矩阵的大小
        alphas = mat(zeros((m,1))) #生成一个0矩阵 列矩阵
        iter = 0                   #迭代次数
        while (iter < maxIter):
            alphaPairsChanged = 0  #用于记录alpha是否已经优化
            for i in range(m):
                fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b      #fXi是要预测的类别
                Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions    #计算误差
                if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): #如果可以被优化
                    j = selectJrand(i,m)#随机选择一个数
                    fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b  #fXj是要预测的类别 multiply表示各元素相乘,T是转置
                    Ej = fXj - float(labelMat[j])                                                #计算误差
                    alphaIold = alphas[i].copy()#python中的copy方法
                    alphaJold = alphas[j].copy();
                    if (labelMat[i] != labelMat[j]):
                        L = max(0, alphas[j] - alphas[i])
                        H = min(C, C + alphas[j] - alphas[i])
                    else:
                        L = max(0, alphas[j] + alphas[i] - C)
                        H = min(C, alphas[j] + alphas[i])
                    if L==H: 
                        print ("L==H"); continue
                    eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T
                    if eta >= 0: 
                        print ("eta>=0"); continue
                    alphas[j] -= labelMat[j]*(Ei - Ej)/eta
                    alphas[j] = clipAlpha(alphas[j],H,L)
                    if (abs(alphas[j] - alphaJold) < 0.00001): 
                        print ("j not moving enough"); continue
                    alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#更新i,与j的变化量相同但是方向相反
                    #给两个alpha值设置常数项b
                    b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T
                    b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T
                    if (0 < alphas[i]) and (C > alphas[i]): 
                        b = b1
                    elif (0 < alphas[j]) and (C > alphas[j]): 
                        b = b2
                    else: 
                        b = (b1 + b2)/2.0
                    alphaPairsChanged += 1
                    print ("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            if (alphaPairsChanged == 0): 
                iter += 1 # alphaPairsChanged == 0 表示未更新
            else: 
                iter = 0  # alphaPairsChanged != 0 表示已更新
            print ("iteration number: %d" % iter)
        return b,alphas
    #核转换函数
    #输入参数为()
    #元组KTup给出了核函数的信息 元组的第一个参数描述核函数的类型
    def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
        m,n = shape(X)
        K = mat(zeros((m,1)))
        if kTup[0]=='lin':   #线性核
            K = X * A.T   
        elif kTup[0]=='rbf': #径向基核
            for j in range(m): #对矩阵的每个元素计算高斯函数的值
                deltaRow = X[j,:] - A
                K[j] = deltaRow*deltaRow.T
            K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
        else: #遇到无法识别的元组,程序抛出异常
            raise NameError('Houston We Have a Problem That Kernel is not recognized')
        return K
    #建立一个数据结构来保存重要值
    class optStruct:
        def __init__(self,dataMatIn, classLabels, C, toler, kTup): #使用参数来初始化结构
            self.X = dataMatIn
            self.labelMat = classLabels
            self.C = C
            self.tol = toler
            self.m = shape(dataMatIn)[0]
            self.alphas = mat(zeros((self.m,1)))
            self.b = 0
            self.eCache = mat(zeros((self.m,2))) #第一列是标志位第二列是实际的E值
            self.K = mat(zeros((self.m,self.m)))
            for i in range(self.m):
                self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)
    #计算E值并返回,是从SMO中提取出来的        
    def calcEk(oS, k):
        fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
        Ek = fXk - float(oS.labelMat[k])
        return Ek
    #计算内循环的alpha        
    def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
        maxK = -1; maxDeltaE = 0; Ej = 0
        oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
        validEcacheList = nonzero(oS.eCache[:,0].A)[0]
        if (len(validEcacheList)) > 1:
            for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
                if k == i: continue #don't calc for i, waste of time
                Ek = calcEk(oS, k)
                deltaE = abs(Ei - Ek)
                if (deltaE > maxDeltaE):#改变最大的那个值
                    maxK = k; maxDeltaE = deltaE; Ej = Ek
            return maxK, Ej
        else:   #in this case (first time around) we don't have any valid eCache values
            j = selectJrand(i, oS.m)
            Ej = calcEk(oS, j)
        return j, Ej
    #更新
    def updateEk(oS, k):#after any alpha has changed update the new value in the cache
        Ek = calcEk(oS, k)
        oS.eCache[k] = [1,Ek]
    #与smoSimple类似但是有改进     
    def innerL(i, oS):
        Ei = calcEk(oS, i)
        if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
            j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
            alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
            if (oS.labelMat[i] != oS.labelMat[j]):
                L = max(0, oS.alphas[j] - oS.alphas[i])
                H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
            else:
                L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
                H = min(oS.C, oS.alphas[j] + oS.alphas[i])
            if L==H: 
                print ("L==H"); return 0
            eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
            if eta >= 0: 
                print ("eta>=0"); return 0
            oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
            oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
            updateEk(oS, j) #added this for the Ecache
            if (abs(oS.alphas[j] - alphaJold) < 0.00001): 
                print ("j not moving enough"); return 0
            oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
            updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
            b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
            b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
            if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): 
                oS.b = b1
            elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): 
                oS.b = b2
            else: 
                oS.b = (b1 + b2)/2.0
            return 1
        else: 
            return 0
    #有核函数的完整版的SMO算法
    #输入参数为(数据集,标签集,常数C,容错率,最大循环次数,核函数)
    def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):    #full Platt SMO
        oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)
        iter = 0
        entireSet = True
        alphaPairsChanged = 0
        while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
            alphaPairsChanged = 0
            if entireSet:   #go over all
                for i in range(oS.m):        
                    alphaPairsChanged += innerL(i,oS)
                    print ("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
                iter += 1
            else:#go over non-bound (railed) alphas
                nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
                for i in nonBoundIs:
                    alphaPairsChanged += innerL(i,oS)
                    print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
                iter += 1
            if entireSet: 
                entireSet = False #toggle entire set loop
            elif (alphaPairsChanged == 0): 
                entireSet = True  
            print ("iteration number: %d" % iter)
        return oS.b,oS.alphas
    #计算WS
    def calcWs(alphas,dataArr,classLabels):
        X = mat(dataArr); labelMat = mat(classLabels).transpose()
        m,n = shape(X)
        w = zeros((n,1))
        for i in range(m):
            w += multiply(alphas[i]*labelMat[i],X[i,:].T)
        return w
    #测试径向基核函数
    def testRbf(k1=1.3):
        dataArr,labelArr = loadDataSet('testSetRBF.txt')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]#得到大于零的alpha值 从而得到支持向量
        sVs=datMat[svInd] #get matrix of only support vectors
        labelSV = labelMat[svInd];
        print ("there are %d Support Vectors" % shape(sVs)[0])
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):#利用核函数分类
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print ("the training error rate is: %f" % (float(errorCount)/m))
        dataArr,labelArr = loadDataSet('testSetRBF2.txt')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):#利用核函数测试
            kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print ("the test error rate is: %f" % (float(errorCount)/m))    
    
    #********以下为使用核函数支持向量机做手写识别分类***********#    
    #转换为向量
    def img2vector(filename):
        returnVect = zeros((1,1024))
        fr = open(filename)
        for i in range(32):
            lineStr = fr.readline()
            for j in range(32):
                returnVect[0,32*i+j] = int(lineStr[j])
        return returnVect
    #加载图像
    def loadImages(dirName):
        from os import listdir
        hwLabels = []
        trainingFileList = listdir(dirName)           #load the training set
        m = len(trainingFileList)
        trainingMat = zeros((m,1024))
        for i in range(m):
            fileNameStr = trainingFileList[i]
            fileStr = fileNameStr.split('.')[0]     #take off .txt
            classNumStr = int(fileStr.split('_')[0])
            if classNumStr == 9: #二分类
                hwLabels.append(-1)
            else: 
                hwLabels.append(1)
            trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
        return trainingMat, hwLabels    
    #和testRbf差不多也是一个测试函数
    def testDigits(kTup=('rbf', 10)):#设置了默认的核函数
        dataArr,labelArr = loadImages('trainingDigits')
        b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        svInd=nonzero(alphas.A>0)[0]
        sVs=datMat[svInd] 
        labelSV = labelMat[svInd];
        print ("there are %d Support Vectors" % shape(sVs)[0])
        m,n = shape(datMat)
        errorCount = 0
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1
        print ("the training error rate is: %f" % (float(errorCount)/m))
        dataArr,labelArr = loadImages('testDigits')
        errorCount = 0
        datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
        m,n = shape(datMat)
        for i in range(m):
            kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
            predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
            if sign(predict)!=sign(labelArr[i]): errorCount += 1    
        print ("the test error rate is: %f" % (float(errorCount)/m)) 

    结果如下:

    import svm
    》svm.testDigits(kTup=('rbf', 10))
    there are 125 Support Vectors
    the training error rate is: 0.000000
    the test error rate is: 0.005376

    除此外要有公式推导

  • 相关阅读:
    P2515 [HAOI2010]软件安装
    P2502 [HAOI2006]旅行 最小生成树
    Luogu P2511 [HAOI2008]木棍分割 二分+DP
    P2303 [SDOI2012]Longge的问题 我傻QwQ
    P1129 [ZJOI2007]矩阵游戏 二分图匹配
    BZOJ3211花神游历各国
    [HNOI2011]XOR和路径
    NOIP考前划水
    [IOI2018]组合动作
    [NOIP2017]逛公园
  • 原文地址:https://www.cnblogs.com/Aaron12/p/8994058.html
Copyright © 2020-2023  润新知