还好$QwQ$
思路:矩阵快速幂
提交:1次
题解:
如图:
注意$n,m$如果小于$k$就不要快速幂了,直接算就行、。。
#include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #define ull unsigned long long #define ll long long #define R register ll using namespace std; #define pause (for(R i=1;i<=10000000000;++i)) #define In freopen("NOIPAK++.in","r",stdin) #define Out freopen("out.out","w",stdout) namespace Fread { static char B[1<<15],*S=B,*D=B; #ifndef JACK #define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++) #endif inline ll g() { R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix; if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix; } inline bool isempty(const char& ch) {return (ch<=36||ch>=127);} inline void gs(char* s) { register char ch; while(isempty(ch=getchar())); do *s++=ch; while(!isempty(ch=getchar())); } } using Fread::g; using Fread::gs; namespace Luitaryi { const int N=20; int k,mod,b[N],c[N]; ll n,m,sumn,summ,sum[N]; ll ans[N],s[N],a[N][N],mem[N][N]; inline void mul(ll a[][N],ll b[][N]) { R tmp[N][N]; memset(tmp,0,sizeof(tmp)); for(R i=1;i<=k+1;++i) for(R l=1;l<=k+1;++l) for(R j=1;j<=k+1;++j) tmp[i][j]=(tmp[i][j]+a[i][l]*b[l][j])%mod; memcpy(a,tmp,sizeof(tmp)); } inline void qpow(ll p) { R ret[N][N]; memset(ret,0,sizeof(ret)); for(R i=1;i<=k+1;++i) ret[i][i]=1; for(;p;p>>=1,mul(a,a)) if(p&1) mul(ret,a); memcpy(a,ret,sizeof(a)); } inline void main() { k=g(); for(R i=1;i<=k;i++) b[i]=g(); for(R i=1;i<=k;++i) c[i]=g(); m=g()-k-1,n=g()-k,mod=g(); const int M=mod; for(R i=1;i<=k;++i) sum[i]=(b[i]+sum[i-1])%M; for(R i=1;i<=k;++i) s[i]=b[i]%M; s[k+1]=sum[k]%M; for(R i=1;i<k;++i) a[i+1][i]=1; for(R i=1;i<=k;++i) a[i][k]=a[i][k+1]=c[k-i+1]%M; a[k+1][k+1]=1; if(n<=0) return (void)printf("%lld ",((sum[k+n-1]-sum[k+m-1])%M+M)%M); memcpy(mem,a,sizeof(a)); qpow(n); for(R i=1;i<=k+1;++i) for(R j=1;j<=k+1;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; sumn=ans[k+1]; if(m<=0) return (void)printf("%lld ",((sumn-sum[k+m])%M+M)%M); memset(ans,0,sizeof(ans)); memcpy(a,mem,sizeof(a)); qpow(m); for(R i=1;i<=k+1;++i) for(R j=1;j<=k+1;++j) ans[j]=(ans[j]+s[i]*a[i][j])%M; summ=ans[k+1]; printf("%lld ",((sumn-summ)%M+M)%M); } } signed main() { Luitaryi::main(); return 0; }
2019.07.21