实际上这个距离就是切比雪夫距离
可以转换成曼哈顿距离,给出公式
(x1,y1)->(x2,y2)的切比雪夫距离==(x1+y1,x1-y1)->(x2+y2,x2-y2)的曼哈顿距离/2
那么曼哈顿就好搞了吧,直接一波前缀和
还有面积比是1:2(曼哈顿:切比雪夫)
#include<cstdio> #include<iostream> #include<cstring> #include<cstdlib> #include<algorithm> #include<cmath> using namespace std; typedef long long LL; struct node { LL x,y; }a[110000]; LL xx[110000],yy[110000]; LL sumx[110000],sumy[110000]; int main() { int n; scanf("%d",&n); for(int i=1;i<=n;i++) { scanf("%lld%lld",&a[i].x,&a[i].y); a[i].x+=a[i].y;a[i].y=a[i].x-2*a[i].y; xx[i]=a[i].x;yy[i]=a[i].y; } sort(xx+1,xx+n+1); sumx[0]=0;for(int i=1;i<=n;i++)sumx[i]=sumx[i-1]+xx[i]; sort(yy+1,yy+n+1); sumy[0]=0;for(int i=1;i<=n;i++)sumy[i]=sumy[i-1]+yy[i]; LL ans=(1LL<<62); for(int i=1;i<=n;i++) { LL sum=0,id; id=lower_bound(xx+1,xx+n+1,a[i].x)-xx; sum+=((id-1)*xx[id]-sumx[id-1])+((sumx[n]-sumx[id])-(n-id)*xx[id]); id=lower_bound(yy+1,yy+n+1,a[i].y)-yy; sum+=((id-1)*yy[id]-sumy[id-1])+((sumy[n]-sumy[id])-(n-id)*yy[id]); ans=min(ans,sum); } printf("%lld ",ans/2); return 0; }