• PAT 1053. Path of Equal Weight


    Given a non-empty tree with root R, and with weight Wi assigned to each tree node Ti. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

    Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.


           Figure 1

    Input Specification:

    Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 230, the given weight number. The next line contains N positive numbers where Wi (<1000) corresponds to the tree node Ti. Then M lines follow, each in the format:

    ID K ID[1] ID[2] ... ID[K]

    where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

    Output Specification:

    For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

    Note: sequence {A1, A2, ..., An} is said to be greater than sequence {B1, B2, ..., Bm} if there exists 1 <= k < min{n, m} such that Ai = Bi for i=1, ... k, and Ak+1 > Bk+1.

    Sample Input:

    20 9 24
    10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
    00 4 01 02 03 04
    02 1 05
    04 2 06 07
    03 3 11 12 13
    06 1 09
    07 2 08 10
    16 1 15
    13 3 14 16 17
    17 2 18 19
    

    Sample Output:

    10 5 2 7
    10 4 10
    10 3 3 6 2
    10 3 3 6 2
    

    分析

    我觉得这道题还是很oK的,用邻接表方式储存子节点,并对每个父节点所有的子节点按权重排序,再用dfs,在dfs中保存路径,当dfs到叶节点时,即该节点的邻接表为空时,判断该条路径的和是否与题目要求的相等,相等则输出路径。注意在每次对一个节点的所有邻接表中的节点访问后,就要pop出,sum也要减去相应节点的weight,以维持路径和sum的正确性。
    
    #include<iostream>
    #include<vector>
    #include<algorithm>
    using namespace std;
    int weight[101],n,m,s,father,son,num,pre[101];
    vector<int> list[101],res;
    bool cmp(const int& n,const int& m){
    	return weight[n]>weight[m];
    }
    void dfs(int root,int sum){
    	res.push_back(weight[root]);
    	sum+=weight[root];
    	if(list[root].size()==0){
    		if(sum==s){
    			for(int i=0;i<res.size();i++)
    			i>0?cout<<" "<<res[i]:cout<<res[i];
    			cout<<endl;
    		}
    		sum-=res[res.size()-1];
    		res.pop_back();
    		return ;
    	}
    	for(int i=0;i<list[root].size();i++)
    	    dfs(list[root][i],sum);
    	sum-=res[res.size()-1];
    	res.pop_back();
    }
    int main(){
    	cin>>n>>m>>s;
    	for(int i=0;i<n;i++)
    	    cin>>weight[i];
    	for(int i=0;i<m;i++){
    		cin>>father>>num;
    		for(int j=0;j<num;j++){
    			cin>>son;
    		    list[father].push_back(son);
    		}
    		sort(list[father].begin(),list[father].end(),cmp);
    	}
    	dfs(0,0);
    	return 0;
    }
    
  • 相关阅读:
    Vue生命周期,及父子组件生命周期顺序
    使用jquery制作可视化的组织结构
    用Moon.Orm来做分页数据显示
    bash脚本之代码统计
    CSS选择符总结
    css选择符归类
    APP测试与WEB测试的区别
    使用Jmeter 对APP进行压力测试
    Python基础之数据类型
    App测试要点以及Bug分类
  • 原文地址:https://www.cnblogs.com/A-Little-Nut/p/8335005.html
Copyright © 2020-2023  润新知